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Abstract 

The paper gives an overview of Material Point Method and show its evolution over the last 25 

years. The Material Point Method developments followed a logical order. The article aims at 

identifying this order and show not only the current state of the art, but explain the drivers 

behind the developments and identify what is currently still missing.  

The paper explores modern implementations of both explicit and implicit Material Point 

Method. It concentrates mainly on uses of the method in engineering, but also gives a short 

overview of Material Point Method application in computer graphics and animation. The article 

also gives overview of errors in the material point method algorithms, as well as identify gaps 

in knowledge, filling which would hopefully lead to a much more efficient and accurate 

Material Point Method. The paper also briefly discusses algorithms related to contact and 

boundaries, coupling the Material Point Method with other numerical methods and modelling 

of fractures. It also gives an overview of modelling of multi-phase continua with Material Point 

Method. The paper closes with numerical examples, aiming at showing the capabilities of 

Material Point Method in advanced simulations. Those include landslide modelling, 

multiphysics simulation of shaped charge explosion and simulations of granular material flow 

out of a silo undergoing changes from continuous to discontinuous and back to continuous 

behaviour. 

The paper uniquely illustrates many of the developments not only with figures, but also with 

videos, giving the whole extend of simulation instead of just a timestamped image.  
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1. Introduction

Material Point Method (MPM) has been developed by Sulsky et al. (1994, 1995) as an 

extension of FLuid Implicit Particle (FLIP) method (Harlow, 1963, 1988) to solve standard 

continuum solid mechanics problems in time. MPM is a robust method, especially capable of 

computing problems with very large deformation, poorly suited for other numerical methods 

based on continuum mechanics like Finite Element Method (FEM) or Finite Difference 

Method. On the other hand, unlike other particle based methods, such as Discrete Element 

Method (DEM) or Smoothed Particles Hydrodynamics that are well suited for problems with 

large displacements, MPM uses the continuum mechanics framework. Therefore, all the 

constitutive models implemented in FEM codes can be quite easily transferred into MPM 

codes, allowing for solving the problems that fail to converge in the FEM simulations. This is 

currently the main niche for MPM – simulations with large displacements, which are difficult 

to solve with other methods based on continuum mechanics due to mesh distortion and other 

algorithmic problems. On the other hand, the accuracy increase with grid density and the 

number of material points is currently lower than that of FEM with high order elements. 

Therefore,      MPM simulations require more computation time than those made with FEM for 

equal numerical accuracy, which prevents MPM from competing with FEM in standard 

calculations.  

The current MPM developments aim to improve the method in terms of (i) accuracy, by 

removing method specific errors and increasing convergence rate, (ii) versatility, by improving 

the ability to model, among others, cracks and material flows, and by introducing more accurate 

and versatile boundaries and contact algorithms and (iii) usability, by introducing coupling 

with FEM and other numerical methods, as well as extending the method to modelling coupled 

Thermo-Hydro-Mechanical problems. All the developments preserve      the ability of the 

method to give results even in the case of rapidly occurring very large displacements and 



strains, often referred to as robustness     . That      is perhaps      the most pronounced advantage 

of MPM over other numerical methods based on mechanics of continua. 

MPM discretises the initial problem with material points, also referred to in the text of this 

paper as particles. The material points initially did not have any physical dimensions (Sulsky 

et al., 1994), but in further developments they gained deformable domains (Bardenhagen & 

Kober, 2004), which later become fully deformable also in shear deformations (Sadeghirad et 

al., 2011, 2013). The material points are cast on a computational grid. In each step of 

calculations (in explicit MPM, real time step) the momentum from the material points is 

transmitted to the grid nodes. That is done with an integral of functions being a conjunction of 

particle characteristic functions (describing where the particle domain is) and  grid shape 

functions (describing how the properties from given grid cell point should be transmitted to the 

grid nodes). At the grid nodes, the sum of the momenta is computed. Afterwards, the data from 

the nodes is moved back to particles with the reversed procedure. The algorithm conserves 

energy accurately. The inaccuracies in calculations arise due to (i) simple choice of shape 

functions (current implementations use 3 or 4 node grid cells), (ii) time integration and (iii) 

other errors which are related, for example, to non-optimal number and positioning of material 

points, as well as material points crossing cells boundaries. 

2. Explicit formulations of the Material Point Method

Main contributors: Sołowski, Tran, Berzins, Guilkey, Möller, Tielen 

The Material Point Method original formulation solves the variational form of conservation of 

momentum equation over domain Ω with boundary Ωτ: 

:d d d d


     
   

  +   =   +     a v σ v b v τ v
(1)



where a is the acceleration, b is the body forces, σ is the stress tensor, τ is the forces acting on 

body boundaries Ωt , δv is the admissible velocity field (variational test function) and ρ is the 

material density. Equation 1 is satisfied in each time step at each grid node, with all the material 

points with the domains in the grid cells sharing the node contributing. The MPM algorithms 

differ in how they compute the integrals at the nodes basing on the data contained in material 

points. However, the general algorithm of the method remains the same. 

MPM stores all the computational quantities, including history variables, at the material points, 

with grid and grid nodes being just used for computations in each time step. Therefore, at the 

beginning of the algorithm step, all the data, including mass, velocity, stress and strain, as well 

as – possibly – domain size and shape, are at the material points.  

1. 2.1 Initial discretisation

To initially discretise the problem, the domain Ω is divided into material points, such that the 

sum of material point domains covers the whole domain. Each material point has domain 

described by a non-negative particle characteristic function χp. To avoid the errors, the sum of 

all the particles characteristic functions (from 1 to total number of point np) at any point x of 

the discretised domain Ω should be 1, i.e. they should be a partition of unity: 

1

( ) 1
np

i

p

i


=

= x
(2) 

In principle, there is no requirement that the particle domains do not overlap, but the weighting 

of all the particles should preserve the partition of unity. Having such a discretisation, any 

quantity in domain Ω can be assigned to particles. For example, the i-th particle volume is  

( )i i

p pV d


=  x
(3)



The i-th particle mass is 

( ) ( )i i

p pm d 


=  x x
, (4) 

     where ρ is the density of the material at point x. The i-th particle stress 
i

pσ is 

1
( ) ( )i i

p pi

p

d
V




= σ σ x x

(5) 

where ( )σ x  is the initial value of the stress at point x of the domain Ω and the integral is 

computed for each of the stress components separately. The values are averaged over the 

particle domain and even if we initially have the accurate data of the given field at the initial 

state, it is irrecoverable accurately after discretisation, leading to the initial discretisation error. 

However, as long as the integrals are accurately computed, the total amount of mass and 

momentum is preserved. The mass and momentum are also preserved in the whole MPM 

algorithm. 

2.2 General algorithm of explicit Material Point Method 

MPM solves Eq. 1 on the grid, while the material points contain all the data at the beginning 

of each time step. Hence, in each step of computations, the algorithm has to transfer the data 

from the material points to the grid nodes. For this transfer we use grid shape functions Sv. 

Additionally, to avoid errors, the grid shape functions should satisfy the partition of unity, that 

is at any point x of the domain Ω, the sum of all the grid shape functions should be one: 

1

( ) 1
nn

i

v

i

S
=

= x
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, where nn is the total number of grid nodes. Having chosen the grid shape functions and the 

particle characteristic functions, there is enough information to transfer the data from the 

particles to the grid nodes. To calculate the quantities at the nodes, from each material point 

and each grid node, the algorithm defines the weighting function Svp, and the gradient of the 

weighting function vpS
 as: 

1
( ) ( )vp v p

p

S S d
V




=  x x

(7) 

1
( ) ( )vp v p

p

S S d
V




 =   x x

(8) 

Note that the integral given in Equations 7 and 8, for each pair (node, material point) gives a 

single value in case of 1D calculations, two values, corresponding to x and y directions  in 2D 

case, and three values in 3D case. Also, as both Sv and  χp are partition of unity, Svp is also 

partition of unity. Having defined the weighting function and its gradient, the nodal quantities, 

such as nodal momentum pv and nodal forces are computed as the product of weighting 

function and material point momentum pp: 

1

np
i

v p vp

i

S
=

= p p
(9) 

and the nodal masses are: 

1

np
i

v p vp

i

m m S
=

= 
(10) 

The internal forces for given grid node due to stress in the material points are 

int

1

np
i i i

v p vp p

i

S V
=

= − f σ
(11)



The body forces b are taken into account as 

1

np
b i i i

v p vp

i

m S
=

= f b
(12) 

And the boundary conditions satisfied at the nodes are 

( )v vS dS



 


= f x

(13) 

Equation 13 describing traction boundaries is not trivial to discretize. As the material points 

can move freely through the grid, establishing the traction at grid nodes at the initial 

discretisation is not sufficient, because the material points may not be present at given grid 

nodes after deformation. As such, often, the boundary forces are stored at the material points 

and in each step moved to the nodes, similarly to body forces. Typically, such a simple solution 

is of sufficient accuracy, even though it does not take into account rigid bodies rotations and 

changes in boundary shape. When an accurate representation of boundary tractions via 

discretization of Equation 13 is required, there is a need for an algorithm involving accurate 

tracking of boundaries, e.g. as proposed by Cortis et al. (2018). 

Having computed the values of nodal forces (Equations 11-13) and nodal mass, the discretised 

version of Equation 1 is used to balance the rate of change of momentum at each node: 

int b

v v v v

= + +p f f f (14) 

If there are any Dirichlet boundary conditions (e.g. specified velocity and in particular velocity 

equal to zero), it is applied here by overwriting the computed grid momentum. 

Typically, to reduce the numerical diffusion, the rate of material point position changes is 

updated using grid nodal velocities, while the rate of material point momentum change is 



updated using grid nodal accelerations (computed based on the grid nodal rate of momentum 

change): 

1 1

inn nn
i i iv

p vp v vpi
i iv

S S
m= =

= = 
p

x v

 (15) 
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The above transfers to and from nodes conserve mass and momentum. The actual positions are 

updated typically with a Forward Euler scheme, i.e. by multiplying the time derivatives with 

the given time step value dt. 

The nodal velocities gradients can be used to compute the rate of change in the field of strain 

at any point x of the domain Ω: 

( ) ( )
1

1 1
( ) ( ) ( )

2 2

nn
T i i i i

v v v v

i

S S
=

=  +  =  + ε x v x v x v v
(17) 

This strain field can be associated with strain at material points as: 

( )
1

1 1
( ) ( )

2

nn
i i i i

p p vp v v vp

ip

d S S
V


=

= =  + ε x ε x x v v

(18) 

The strains are further used to compute the new stresses in particles (update stress last). Such 

an update has slightly dissipative properties (Bardenhagen, 2002), and is implemented in many 

MPM codes. The alternative is to update stress first, that is update strains and stresses before 

solving equation 14.  More details on the implementation choices and discussion between these 

alternative formulations are given e.g. in (Bardenhagen, 2002; Buzzi et al., 2008). 



Once all the data is mapped back to the particles and position of the material points is updated, 

the next step of the algorithm begins with the time increased by the time step value dt. The grid 

in the next step typically stays the same as in the previous step, i.e. nodal positions are not 

updated. 

Almost all versions of the explicit MPM follow this algorithm, with differences related to, for 

example, choice of the functions and domain tracking. Furthermore, the accuracy of the 

calculations fundamentally depends on the grid density. The grid also affects other errors in 

the calculations. For example, material points crossing the boundaries of grid cells may lead to 

errors. As such, the grid density is essential in calculations, even though the method discretises 

the initial problem into material points, not grid nodes. 

2.3 Original Material Point Method 

The development of the original Material Point Method (Sulsky et al., 1994) took inspiration 

from the Particle in Cell and FLIP methods (Harlow, 1963, 1988), extending them into solid 

mechanics. This first MPM assumed that the particles do not have a domain, but just mass and 

velocity. Therefore, the particle characteristic function χp is the Dirac delta function. The 

chosen grid shape functions are linear, and equal to 1 in the given node and zero in all the nodes 

in the neighbouring cells. The material points, during initial discretisation, assume mass 

computed as equivalent to the amount of mass of the discretised domain. This mass is constant. 

The particles also have strain and corresponding stress. 

The original Material Point Method is relatively robust. However, as the grid shape functions 

are linear, the gradient of those functions is – in case of taking the grid size as a unity – plus or 

minus 1. Therefore, when a particle crosses the grid boundary, the force at the node due to 

particles stress (eq 11) changes sign, as the shape function gradient changes sign. That leads to 

error and abrupt changes in solution when the particle crosses grid cell boundary, see Figure 1. 



Figure 1. Initial discretisation of 1D bar with particles (blue squares) initially distributed uniformly, 

two per cell (top). As compression increases, eventually a node will have two particles on one side, 

and three on the other (bottom), leading to an imbalance in internal force when using linear shape 

functions, as described in the text. 

Astute readers of the early MPM literature recognized a potential source of error arising from 

the internal force calculation, given by Equation (11). The following simple thought 

experiment will illuminate a primary source of error, namely, when particles cross from one 

cell to a neighbouring cell.  Suppose we have a one-dimensional elastic bar in quasi-static 

compression, such that all particles have the same value of stress.  Assume a common scenario 

in which all particles have the same volume, and are distributed uniformly with 2 particles/cell, 

in cells with width dx (Figure 1, top).   

Figure 2. Linear shape function (left) and its gradient,      discontinuous at the node. 



For the linear shape function, its gradient on either side of a grid node is +/- 1/Δx, as shown in 

Figure 2.  While the load is small enough such that all cells contain two particles, the internal 

force equation becomes: 

𝜑𝑣
𝑖𝑛𝑡 = − (𝜎𝑝

1

∆𝑥
𝑉𝑝 + 𝜎𝑝

1

∆𝑥
𝑉𝑝 − 𝜎𝑝

1

∆𝑥
𝑉𝑝 − 𝜎𝑝

1

∆𝑥
𝑉𝑝) = 0 (19) 

which is the correct result for a bar in static equilibrium.  If the load is increased slowly such 

that a state of near equilibrium is maintained, eventually the particles will become arranged as 

shown in Figure 1 (bottom), where at least one node will have three particles on one side, and 

two on the other.  The force balance is disrupted in a stepwise manner as soon as this 

imbalanced particle distribution is reached.  This leads to reduction of accuracy in calculation. 

The force may eventually rebalance, but in such a case, the uniform stress distribution in the 

particles is lost. The situation may also lead to a total loss of stability in computations. 

For highly dynamic simulations such as Taylor impact or rod penetration, these types of force 

imbalances may not be significant.  However, when MPM was a new method, it was natural 

for those interested in it to try to solve very simple quasi-static problems, and for the reasons 

described here, those simulations often did not go well.  The use of higher order B-splines 

alleviates cell crossing errors, but also introduces other complications, such as treatment of 

grid-based boundary conditions and enlarging the distance at which self-contact begins. 

Cell crossing error was the primary motivation for the development of finite domain based 

particle methods, the first of which was the Generalized Interpolation Material Point (GIMP) 

method of Bardenhagen & Kober (2004), as well as the “Dual Domain” Material Point 

(DDMP) method of Zhang et al. (2011).  It seems unlikely that MPM would have found 

anywhere near the level of adoption that it currently has were it not for these authors’ 

contributions to the method, as shown in further sections. 



2.4      Generalized Interpolation Material Point Method (GIMP) 

The Generalized Interpolation Material Point Method (Bardenhagen & Kober, 2004) is a 

general class of Material Point Method algorithms     , developed to improve accuracy and 

address instabilities of the original MPM formulation.  The general GIMP algorithm is given 

in section 2.2. However, typically GIMP is understood as Contiguous Particles GIMP Method. 

In this case, the particle characteristic function 
( )p x

 is given as: 

1 inside particle domain, i.e. when
( )

0 outside of particle domain, i.e. when 

p

p

p


− 

= 
− 

x
x

x
 (20) 

The particle domain is chosen as a line segment in 1D, a square (or a rectangle) in 2D and a 

cube in 3D. GIMP combines this function with a linear grid shape function being 1 at the given 

grid node and 0 at the neighbouring nodes. In this case, the integration (eq. 7 and 8) can be 

done analytically, leading to the exact weighting function Svp, and the gradient of the weighting 

function vpS
. Two main implementations of GIMP differ in how they treat the domain of the 

particle p
. When this domain is unchanged during simulation, the variant of the method is 

called UGIMP. On the other hand, when the domain volume is updated in line with strains, the 

method is typically called cpGIMP. However, to preserve the analytically computed weighting 

functions, the domain is retaining the rectangular shape in 2D (cube in 3D) and hence the 

method does not take into account any shear deformations and rigid body rotations. Also, 

GIMP does not ensure continuity, i.e. the domains of the neighbouring points are not 

connected, which means that during a simulation the particle characteristic functions of two 

particles may be 1 in a given particular point of space (particle may overlap, 2p =  ). On 

the other hand, there may also be discontinuities with some parts of the initial domain not 



covered by any particle characteristic function ( 0p = ). These problems would be reduced 

in the Fuzzy Particle GIMP Method, also proposed by Bardenhagen & Kober (2004), where 

the particle domains overlap in the initial discretisation. In this case, assuming, e.g. overlap of 

2 particles in each point of the discretised domain, if after deformations the domains become 

misaligned, the total value of the particle characteristic function would be 1.5p =  or 

0.5p = . However, the Fuzzy Particle GIMP Method has not been implemented into major 

MPM codes, and therefore there is not much experience in its robustness and accuracy. 

Wallstedt & Guilkey (2008) performed a Method of Manufactured Solutions (MMS) analysis 

comparing the accuracy of UGIMP and cpGIMP. They have demonstrated the superior 

accuracy of both GIMP methods over the original MPM.  While cpGIMP is shown to be 

considerably more accurate compared to UGIMP for a special case where the manufactured 

solution is designed to keep the particles aligned to the axis and rectangular, for more general 

loading, the advantage is nearly negligible, as even cpGIMP imposes the constraint that 

particles remain rectangular (or cuboid in three-dimensions) and aligned to the principal axes.  

These limitations prevent cpGIMP from providing significantly improved accuracy for all but 

a few special problems. 

2.5 Convected Particle Domain Interpolation (CPDI) Material Point Method 

GIMP was a tremendous step forward in allowing MPM to be considered a      method for 

practical engineering calculations, but still includes a few deficiencies.  First, curved 

geometry is described by a ragged “stair-step” edge.  Next, the effect of shear deformation on 

the particle domain is not accounted for, and finally, at large deformation, a numerical 

fracture is still possible as a gap between particles develops in tensile loading. 



The improvement to GIMP, which allows for shear deformation of the particles domain is the 

Contiguous Particle Domain Interpolation Material Point Method (Sadeghirad et al., 2011). 

The method proposes an alternative evaluation of Eq. 7 and 8 that does not require division of 

the particle domains along cell boundaries. To that end, it constructs the alternative grid basis 

functions at a given point x  as an interpolation of standard grid basis function 
i

vS  at four 

corners in 2D ( 1..4 = ) of each particle domain multiplied by the Finite Element shape 

function related to a given corner of the particle domain ( )pQ x : 

4
,

1

( ) ( )i app p i p

v vS Q S 
 =

=  x x
 (21) 

The original 
i

vS  and alternative function 
,i app

vS  differ inside the domain, but not in particles 

corners. Having the approximate shape function, the weighting function and its gradient are 

defined as before, but with the 
,i app

vS : 

4

1

1 1
( ) ( ) ( ) ( )app i p p

vp vp p v

p p

S S d S Q d
V V

 



 

=

= =  x x x x x x

 (22) 
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vp vp p v
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S S d S Q d
V V
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


 

=

 =  =  x x x x x x

 (23) 

where it was assumed that the particle characteristic function 
( )p x

is equal to 1 in its domain. 

The weighting functions for the i-th particle are computed in 2D as: 

( )1 2 3 4

1
( ) ( ) ( ) ( )

4

i i p i p i p i p

vp v v v vS S S S S= + + +x x x x
 (24) 



while the gradient is dependent on the domain size, see (Sadeghirad et al., 2011).  In CPDI, the 

particles domains are not connected, i.e. each domain is computed separately with the stretch 

tensor, the areas of the initial domain where the particle characteristic function breach the 

partition of unity, i.e. 1p   are still possible. Nonetheless, as the domains of the particles 

are now better tracked, the magnitude of such errors should be much smaller than in cpGIMP. 

Second-order convected particle domain interpolation (CPDI2) (Sadeghirad et al., 2013) 

improved the domain tracking further. The particle domains are quadrilaterals in 2D and 

hexahedra in 3D. The improved method ensures that the particle domains are tightly covering 

the domain and are similar to a finite element mesh constructed with four-node elements. 

Therefore, CPDI2 can be seen as a bridge between Finite Element Method and Material Point 

Method. CPDI2 can also be enriched to model weak discontinuities  (Sadeghirad et al., 2013).  

In the original CPDI paper, the manufactured solutions used by  Wallstedt & Guilkey (2008) 

were used again.  These showed that, for the special case in which cpGIMP has second-order 

accuracy, CPDI gave identical levels of accuracy, but for more general loading, the latter 

method is considerably more accurate.  Also exposed in that work was the fact that most any 

effort made to approximate a contiguous domain for cpGIMP will break down when certain 

deformations are applied.  More recently, Kamojjala et al. (2015), constructed additional 

manufactured solutions that further demonstrate the superior accuracy of CPDI relative to 

GIMP.  This accuracy does come at the cost of some degree of robustness.  Because CPDI 

particle domains do change, it is possible to deform them to the point that they invert.  Also, 

particle domains can become so extended as to break parallel implementations that rely on a 

fixed amount of ghost data.  Both of these issues are addressed to a large degree through the 

use of so-called “domain scaling” as described by Homel et al. (2016).  Here, a method is 

described in which particle domains are scaled so that the particle corners stay within a sphere 



of user-defined radius.  This approach provides a reasonable compromise between the accuracy 

offered by CPDI and the robustness of GIMP. 

2.6 Convected Particle Least Squares Material Point Method (CPLS)  

In a search for higher convergence variants of MPM, it became apparent that, in certain cases, 

CPDI solutions are not converging at second order. That led to developments of shape functions 

based on splines moving least squares (MLS) reconstruction technique (Sulsky & Gong, 2016). 

CPLS uses improved moving least squares (IMLS) reconstruction and applies it to the CPDI 

Material Point Method (Tran et al., 2020). This leads to a method that obtains higher 

convergence rate and retains the advantages of the CPDI Material Point Method. 

 

(a) Numerical accuracy comparison (b) Numerical efficiency comparison 

Figure 3: Comparison of the algorithm performance between MPM, Moving Least Squares 

(MLS) and Improved Moving Least Squares (IMLS)  ( Tran et al., 2020) 

In general, the MLS method has shown to retain the second order of MPM but suffers from 

certain limitations related to the singular or ill-conditioned coefficient matrix of the linear 

systems. On the other hand, the IMLS method uses the orthogonal polynomials as the 

alternative of the monomials in the original MLS. As a result, the IMLS method can obtain 



high order of accuracy like the MLS method (see Figure 3.a) but is (i) more stable in the ill-

conditioned of the linear systems and (ii) more efficient than the MLS method in terms of 

computational cost (see Figure 3.b). The proposed IMLS method was demonstrated to obtain 

more accurate solutions compared to existing MPM methods in literature in large deformation 

benchmarks (using Methods of Manufactured Solutions). 

2.7 Other examples of explicit formulations of Material Point Method 

2.7.1 Dual Domain Material Point Method 

Another approach which reduces the cell-crossing errors is introduced in the Dual Domain 

technique (DDMP) developed by Zhang et al. (2011). DDMP keeps the linear shape function 

but modifies the gradient form to be continuous between the grid cells. DDMP also enlarges 

the influence domain of material points through dual domains - a cell contains the material 

points (grey cell in Figure 4) and neighbour-node cells (blue dash cell in Figure 4), without 

using the characteristic functions. The value of the shape function gradient in the cell which 

contains the material points 𝛻𝑆𝑖 is computed from the original MPM, while the value of the 

shape function gradient in the neighbor-node cells is calculated from the node-based function 

𝛻𝑆�̃�. In DDMP, the gradient of the shape function is modified from 𝛻𝑆𝑖 to 𝛻𝑆𝑖: 

 
𝛻𝑆𝑖(𝑥) = (𝑥). 𝛻𝑆𝑖 + [1 − (𝑥)]. 𝛻𝑆�̃� (25) 

with the node-based function 𝛻𝑆�̃� being: 

 
𝛻𝑆�̃�(𝑥) = ∑

𝑆𝑗(𝑥)

𝑉𝑗

𝑛𝑛

𝑗=1

∫ 𝑆𝑗𝛻𝑆𝑖𝑑𝑣 (26) 

where 𝑉𝑗 = ∫ 𝑆𝑗𝑑𝑣 is the nodal volume at node j. In eq. (26), the integral  ∫ 𝑆𝑗𝛻𝑆𝑖𝑑𝑣 is 

composed of the linear basis function 𝑆𝑗 and their gradient 𝛻𝑆𝑖. Therefore, it can be solved 

analytically, as the background grid remains unchanged during the calculation. 



 

Figure 4 Schematic of different mapping scheme in MPM 

Figure 5 Gradient of the shape function in 1D 

Figure 5 shows the gradient of the shape function in a one-dimensional case. On the right-hand 

side in Equation (25), the first term represents the mapping of material points to particle-based 

nodes (defined as particle-based mapping) and the second term represents the mapping of 

material points to node-based nodes (defined as node-based mapping). Both mappings are 

weighted by , a weighting function. The gradient of the shape function is continuous only if  is 

continuous and  = 0 at cell boundaries. The choice of  can retrieve the gradient of the shape 

function of other versions of MPM as follows: 



 Si = {

∇Si for MPM  ,  = 1

∇Si
̅̅ ̅̅  for DDMP,  = 1

∇Si
̅̅ ̅̅  for GIMP  ,  = 2

 (27) 

2.7.2 2. B-spline Material Point Method 

The B-spline Material Point Method (BS-MPM) (Steffen et al., 2008; Steffen et al., 2010) 

replaces the piecewise-linear shape functions used on the original MPM method and most of 

the aforementioned modifications by higher-order B-spline basis functions (grid shape 

functions, 
i

vS ). Typically, quadratic and cubic B-splines are adopted as basis functions 
i

vS  

which are, as a consequence, once and twice continuously differentiable, respectively. As a 

consequence, the gradients of the B-spline basis functions are at least continuous, and hence, 

the error related to grid-crossings is eliminated completely. Furthermore, the use of B-spline 

basis functions has the potential to yield high-order spatial convergence if all other sources of 

errors like mass lumping and inaccurate MPM-type integration are eliminated. Figure 6 (c) 

demonstrates that the use of quadratic (p=2) BS-MPM yields optimal order of convergence 

p+1 in the displacement (u) and the velocity (v) and p in the stress σ when used in concert with 

the consistent mass matrix and an accurate numerical integration based on function 

reconstruction. Use of B-spline basis functions alone with standard MPM-type integration 

leads to suboptimal convergence in the stress (p-1) and displacement (p) variable; see Figure 

6(c) blue symbols. It should be noted that research on high-order BS-MPM is ongoing to 

improve the method’s robustness in practical applications. Different approaches exist to 

construct B-spline basis functions. In the first approach, the basis functions are defined for each 

node separately (Steffen et al., 2010). 

Alternatively, univariate B-spline basis functions can be defined for the whole domain at once 

based on a single knot vector. The latter approach follows the idea of Isogeometric Analysis 

(Hughes et al., 2005), a computational approach that unifies finite element analysis and 



conventional computer-aided design. The extension to multiple dimensions is straightforward, 

by adopting the tensor product of univariate B-spline basis functions. Furthermore, B-spline 

basis functions have been applied within the implicit formulations of MPM (Motlagh & 

Coombs, 2017). 

 

 

 

 

 

 

 

Figure 6 Spatial convergence for a one-dimensional vibrating bar (no grid crossing) with: (a) 

the original MPM (b) DDMPM and (c) quadratic BS-MPM without function reconstruction 

techniques and when adopting cubic spline interpolation (CS) and TLS reconstruction.  

In recent years, BS-MPM has been combined with function reconstruction techniques (Tielen 

et al., 2017; Wobbes et al., 2019) to improve the particle based numerical integration typically 

adopted in MPM. A common problem of many reconstruction techniques is that they are either 

inaccurate or fail to conserve the density or momentum distribution of the original particle data. 

Taylor-Least Squares reconstruction (Wobbes et al., 2019) is one of the few approaches that 

enables both accurate and conservative function reconstruction by using Taylor basis functions 

within a discontinuous Galerkin framework. It should be noted, that the Taylor basis functions 

are only used for the reconstruction of a piecewise continuous function from the discrete 

particle data, which is used as surrogate within the numerical integration procedure and not as 



the shape functions within the MPM. Figure 6 illustrates the spatial convergence observed for 

a one-dimensional vibrating bar problem (no grid crossing) with the original MPM, DDMPM 

and BS-MPM using cubic spline interpolation and TLS as reconstruction technique, 

respectively. For the original MPM and DDMPM, the use of function reconstruction techniques 

slightly lowers the observed RMS error, but does not change the order of spatial convergence. 

When applied to BS-MPM, the use of function reconstruction techniques improves the 

observed spatial convergence for both displacement and stress.  

Multivariate B-spline basis functions are defined on a (topologically) structured mesh. 

Extensions to locally refined meshes exist, e.g., THB splines (Giannelli et al., 2012) and LR-

splines (Dokken et al., 2013), but the overall approach still assumes a structured background 

mesh. A possible extension of spline functions to truly unstructured triangulations consists of 

using Powell-Sabin splines as basis functions (Powell & Sabin, 1977), leading to the recently 

proposed Powell-Sabin Material Point Method (PS-MPM) (de Koster et al., 2020). 

Table 1 contains the comparison of the explicit Material Point Method algorithms.  

Table 1. Comparison of the explicit MPM algorithms 

Formulatio

n 

Particle 

Characteristi

c Function 

p
 

Shape function 

vS  

Convergenc

e rate 

Robustnes

s  

Domain 

tracking 2D 

Publication 

Original 

MPM 

Dirac delta linear 2nd order, 

irregular 

(affected by 

errors) 

High no Sulsky et al. 

(1994) 



GIMP  Typically top-

hat (0/1) 

Typically linear Improved 

over original 

MPM 

High / Very 

high 

cpGIMP, 

rectangular 

domains 

 

Bardenhage

n & Kober  

(2004) 

Fuzzy GIMP  Overlapping 

particles 

Linear Improved 

over original 

MPM 

High / Very 

high 

Rectangular 

domains 

Bardenhage

n & Kober  

(2004) 

DDMP  Top-hat (0/1) Linear, gradient 

chosen 

independently 

Improved 

over original 

MPM 

High / Very 

high 

rectangular 

domains 

possible 

Zhang et al. 

(2011) 

CPDI   Top-hat (0/1) Constructed for 

particles 

Typically 2nd 

order 

Medium / 

High  

Parallelogra

m 

 Sadeghirad 

et al. (2011) 

CPDI 2  Top-hat (0/1) Constructed for 

particles 

Typically 2nd 

order 

Medium / 

High 

Quadrilateral

, corners 

tracked 

Sadeghirad 

et al. (2013) 

CPLS  Top-hat (0/1) IMLS (Tran et 

al., 2019) 

Typically 2nd 

order 

Medium / 

High 

Parallelogra

m 

Tran et al. 

(2020)  

BS-MPM  Dirac delta Quadratic/cubi

c B-splines   

Typically 2nd 

order 

(limited by 

other errors) 

Medium / 

Ongoing 

research 

no Steffen et al. 

(2008) 

PS-MPM  Dirac delta Quadratic/cubi

c Powell-Sabin 

splines 

Typically 2nd 

order 

(limited by 

other errors) 

Medium /  

Ongoing 

research 

no de Koster et 

al. (2020). 

 



2.8 Material Point Method in simulations for animation 

 

 The ability of the MPM method to provide solutions for challenging physical problems involving 

large deformations and tearing has not gone unnoticed by those modellers working with the 

animation industry. The needs of this industry are somewhat different from the simulation for 

prediction in standard engineering. The key aspects of methods for use in entertainment is that they 

should be physically realistic as perceived by the viewers and that the methods should be fast and 

robust enough to be used in a production environment.  

This difference in methodology not-withstanding, the need to use MPM for some very challenging 

3D applications has led to a number of developments that are likely to be useful in other settings if 

and when they are analysed and verified.  

The key starting point is the simulations of snow in the movie Frozen based on work by Stomakhin 

et al. (2013, 2014). There are a number of innovations developed in this context starting with a 3D 

extension of the work of Steffen et al. (2008) and more significantly using the idea of rigid and 

affine particles in cell approaches to ensure the conservation of momentum and angular velocity. 

The details of these methods are given in the Appendices of the thesis by Jiang (2015). The central 

idea is that mappings from particles to grids and back again should conserve affine velocities v  of 

the form of  

1n n

i iv v Cx+ = +  (28) 

where C is an d x d matrix and d is the dimension. Jiang (2015) shows that this also helps conserve 

momentum and angular momentum. In a sense, this is a generalization of the linearity preservation 

approaches applied to much simpler MPM models by many, including Gritton et al. (2015). In both 

cases this is a way of reducing the impact of the null space problem described in Section 4.3. The 



affine velocities idea is extended still further by the polynomial particle in cell method of  Fu et al.  

(2017), which has a still richer and more complex representation of velocities at particles.  

The need to generate production solutions quickly has also led to the development of time 

integration approaches that allow large stable timesteps to be taken without being always 

overconcerned with accuracy providing that conservation holds. One approach that is used in this 

context is to formulate an optimization problem to be solved at each large time step (Gast et al., 

2015). This approach is used by others in animation and involves noting that the equations to be 

solved when an implicit method is used may be written as  

1 1 1 1
1 1

2 2

( )
( ) , 0

n n n n n n n n n
n nx x tv x x x x tv x

H x x v
t t t x

+ + + +
+ + − −  − − −  

= − = + = 
    

M f M

 (29) 

, where M is the lumped mass matrix, and forces f are linked to a function   as: x


= −


f

. The 

problem may be solved as an optimisation problem, to improve robustness over the typical Newton 

scheme.  If 
n nx x tv= +    then 

1( ) 0nH x + =  occurs at the minimum of 
1( )nE x +

as 
( )

E
H x

x


=

  for  

2

1
( ) ( ) ( ) ( )

2

TE x x x M x x x
t

= − − + 
  (30) 

Other approaches involve semi-implicit methods such as Daviet & Bertails-Descoubes (2016).  

Another approach is to use a kind of multilevel approach either to apply different time steps in 

different regions (Fang et al., 2018) as well as optimization approaches on GPUs (Gao, Wang, et 

al., 2018). Finally very recent work on a Hierarchically Optimized Time integration method (HOT) 

by Wang et al. (2019) uses a multigrid method that is especially designed for MPM in conjunction 

with Quasi Newton methods as opposed to either Newton’s method or the ADMM alternating 



direction method of multipliers optimization algorithm of Overby et al. (2017). A Multigrid V-

cycle preconditioner is used with a symmetric Gauss Seidel smoother and a conjugate gradient 

method at the coarsest level.  

The final area in which MPM has been extended lies in improved applications of MPM with 

improved physical models. There are many such papers in the online survey of Jiang (2020). 

Examples are on modelling of: fluids foams and sponges (Ram et al., 2015), phase change 

(Stomakhin et al., 2014), sand (Klár et al., 2016), baking and cooking (Ding et al., 2019), cloth 

models (Montazeri et al., 2019) and Fracture (Wang et al., 2019; Wolper et al. 2019), hair rubber 

and soft tissues (Han et al., 2019) and landslides (J. Zhao et al., 2019).  

While many of these innovations are driven by the needs of computer graphics and animation, they 

are clearly applicable in the broader engineering context too, once verified for that application 

space. 

2.9 Future developments 

Material Point Method has been significantly developed since its beginning in 1994. Yet, the 

available algorithms, despite developments (e.g. Sulsky, 2017; Tielen et al., 2017; Tran et al., 

2020; Wobbes et al., 2019), still do not offer high order convergence. This seems to be an area 

where the method is trailing behind FEM, where high order elements offer much faster 

convergence. The question of optimal choice of time stepping algorithm and time step still 

seem to be not fully solved (with some attention given to it e.g. in  (Berzins, 2018; Guilkey & 

Weiss, 2003) and likely will improve in the future. The further optimisation of the algorithm 

such that its robustness is not reduced, while reducing or eliminating various errors is also a 

worthy direction of investigations. Furthermore, the presented algorithms needs enhancements 

to simulate contact more accurately – without them, the contact occurs when a grid node is 

shared leading to an early contact (Figure 7/ Video 1). 



 

Figure 7 / Video 1. With special contact algorithm, contact occurs when the domains of material 

points starts interacting (bottom), and is not dependent on the grid as in GIMP (top) 

3. Implicit formulations of the Material Point Method 

Main contributor: Coombs 

The vast majority of the MPM published in the literature adopt an explicit formulation.  There 

are several reasons for this, some of which include that the original MPM paper used an explicit 

formulation and that explicit formulations are conceptually simpler than implicit methods.  The 

preference for explicit approaches can be highlighted by the difference in the number of 

citations, even when normalising the number of years since publication, for the original explicit 

(Sulsky et al., 1994), average 43 citations/year) and implicit (Guilkey & Weiss, 2003), average 

9 citations/year) material point papers.  This preference for explicit methods is not restricted to  

MPM, for example the original implicit particle-in-cell paper of Cummins and Brackbill 

(Cummins & Brackbill, 2002) has received even fewer citations, at 3.5/year, whereas the 

original explicit fluid mechanics particle-in-cell paper (Harlow, 1964)  currently sits at 

13.3/year.  However, in geotechnical engineering, the majority of numerical analyses adopt 

implicit approaches, especially in the finite element literature.  This can be attributed to several 

reasons, such as researchers/engineers being often interested in the quasi-static response of the 

problem under consideration, the complex nature of the constitutive models adopted and that 

the bulk motion of the soil response often being of primary interest.        

The first implicit MPM approach was published in Guilkey & Weiss (2003) and will be 

discussed in more detail below.  Another important early MPM implementation within the 

context of implicit algorithms was the semi-implicit approach of Sulsky & Kaul (2004).  Since 



these papers, a number of other research groups have adopted an implicit approach to the MPM, 

including [add references], amongst others. 

For implicit formulations of MPM, it is important to distinguish between quasi-static and 

dynamic equilibrium equations.  For quasi-static analyses the inertia term in Equation (1) is set 

to zero, leading the following weak statement of equilibrium  

∫
𝛺

𝜎: 𝛻𝛿𝑣 𝑑𝛺 = ∫
𝛺

𝜌𝑏 ∙ 𝛿𝑣 𝑑𝛺 + ∫
𝛺𝜏

𝜏 ∙ 𝛿𝑣 𝑑𝛺𝜏   (31) 

Both dynamic and quasi-static implementations of the material point method will be considered 

in the following subsections, with Section 3.1 focusing on the original implicit formulation of 

Guilkey and Weiss (2003) and Section 3.2 looking at the quasi-static implementation of 

Charlton et al. (2017).  Following these two sections, other approaches to implicit material 

point analysis will be considered and a comparison with explicit methods presented.  

3.1  Original implicit formulation 

The original implicit formulation of the MPM by Guilkey and Weiss (2003) was based on the 

observation that  

“Calculations on the computational grid are carried out in a manner that is exactly the same 

as those performed for finite element calculations. The material points essentially function as 

integration points for the assembly.” 

This observation has been used by several other authors to express MPM simply as the finite 

element method where the integration points are allowed to move.  Although this is a gross 

simplification of a method that actually includes some key algorithmic differences when 

compared to FEM (e.g. Moresi et al., 2003), it is a useful starting point for conceptual 

understanding of implicit MPMs.        



All implicit material point methods attempt to satisfy the following discretised equilibrium 

equation on the background grid 

𝑓𝑔
𝑒𝑥𝑡 − 𝑓𝑔

𝑖𝑛𝑡 − 𝑀𝑔 ∙ 𝑎𝑔 = 0  (32) 

at the end of the current time step.  In the above equation 𝑓𝑔
𝑒𝑥𝑡 and 𝑓𝑔

𝑖𝑛𝑡 are the external and 

internal force vectors, respectively, 𝑀𝑔 is the global mass matrix and 𝑎𝑔 are the accelerations 

of the background grid nodes.  In order to solve Equation (28), Guilkey and Weiss (2003) 

adopted a fully-implicit Newton-Raphson procedure and combined it with a fairly-standard 

unconditionally stable trapezoidal rule to update the grid kinematics (displacement and velocity 

of the background grid nodes).  One of the key differences between MPM and FEM is that it 

is not possible to transfer velocity/acceleration grid information directly between time steps.  

This is due to the fact that it is possible that material points will move into grid cells that were 

empty on the previous step.  Instead, grid velocity/acceleration values at the start of the time 

step are mapped from material point values using a mass-normalised projection, for example 

𝑣𝑖 = 
∑𝑝 𝑆𝑖𝑝𝑚𝑝𝑣𝑝

𝑀𝑖
, (33) 

where 𝑣𝑖 is the background grid velocity of a specific grid node, 𝑆𝑖𝑝 is the basis function linking 

the material point, 𝑝, and the grid node, 𝑖, 𝑚𝑝 is the mass at a material point, 𝑣𝑝is the velocity 

of a material point and 𝑀𝑖is the mass associated with the background grid node. 

Linearsing Equation (28) with respect to the unknown background grid displacements, 𝑢𝑔, 

results in the following equation 

𝐾𝑔
𝑘−1 ∙ 𝛿𝑢𝑔

𝑘 = 𝑓𝑔
𝑒𝑥𝑡 − (𝑓𝑔

𝑖𝑛𝑡)
𝑘−1

− 𝑀𝑔𝑎𝑔
𝑘−1, (34) 

where 𝑘 is the Newton-Raphson iteration counter and 𝛿 denotes an iterative change.  Note that 

in the above equation the external forces at the nodes, 𝑓𝑔
𝑒𝑥𝑡, and the global mass matrix, 𝑀𝑔, 

are constant over the time step as the material points are assumed to deform consistently with 



the background grid according to the basis functions; that is the value of the basis function 

linking a specific node with a specific material point will not change throughout the time step.  

All of the other terms will, in general, vary over the time step and must be recalculated at each 

iteration of the algorithm.  The Newton-Raphson iterations continue until Equation (28) is 

satisfied to within a given tolerance and once convergence has been achieved the positions, 

velocities and accelerations of the material points are updated.  Guilkey and Weiss (2003) 

mentioned that, as the method has adopted an exact linearization of the discretised equilibrium 

equation (including use of the appropriate algorithmically consistent tangent for the stiffness 

of the underlying material), asymptotic quadratic convergence should be expected from the 

Netwon-Raphson process.  However, Guilkey & Weiss (2003) also state that  

“…the nature of MPM is such that the material points will not in general correspond to the 

optimal sampling locations within elements of the computational grid. This may affect 

convergence via the accuracy of the integral evaluations.” 

This point is not supported by this review as the integration of the residual and the linearized 

stiffness adopt the same quadrature points.  It is true that the location of points within the 

background grid can impact on the conditioning of the global system of equations and this can 

lead to issues in terms of the accuracy of the linear solver, but this is a consequence of the 

difference in magnitude of entries in the global stiffness matrix rather than the use of material 

points as quadrature points – the same issues can be experienced in non-linear finite element 

analysis.    

Guilkey & Weiss (2003) contribution was limited to elastic materials (compressible neo-

Hookean model) undergoing finite deformations and only considered problems where FEM is 

able to provide more efficient and accurate solutions – elastic compression of a billet and stress 



waves in connected circular elastic rods.  The quasi-static implicit implementation of MPM 

presented in the next section will also consider elasto-plastic material behaviour.    

 

3.2 Implicit Generalized Interpolation Material Point Methods 

Charlton et al. (2017) was the first paper to present a quasi-static implicit material point 

formation for large deformation elasto-plasticity for the Generalized Interpolation Material 

Point Method (GIMPM).  An interesting point about this work was the focus on maintaining 

local integration of the stiffness of each background element to keep the method as similar to 

the finite element method as possible.  Before this paper a more material point-focused 

approach, where the contribution of a material point to all of the nodes that it influences being 

computed at the same time, tended to be adopted for generalized interpolation, and other 

domain-based, formulations.  The approach of Charlton et al. (2017) requires the contribution 

of a material point to a node, or rather the basis functions and the associated spatial derivatives 

linking the material point and the node, to be split element by element.  This point is illustrated 

in Figure 1, which shows the one-dimensional basis functions for three nodes (a, b, c) based on 

the contributions from two elements.  The solid dark line shows the basis functions for node 𝑏 

and the dashed lines show how this basis function can be split into contributions from its two 

associated elements.  Splitting the basis function in this way was achieved by expressing the 

basis functions in terms of local element coordinates, rather than global coordinates as in the 

original GIMP approach (Bardenhagen & Kober, 2004).     



 

Figure 8: Element-specific generalized interpolation basis functions (reproduced from [7]), where the 

solid dark line is the basis function associated with node b and the dashed lines show the contribution 

of each element. 

Charlton et al. (2017) also highlighted the importance of mapping the spatial derivatives of the 

basis functions into the current configuration when implementing the MPM method with an 

updated Lagrangian formulation. This mapping can be expressed as 

𝜕𝑆𝑣𝑝

𝜕𝑥𝑗
= 

𝜕𝑆𝑣𝑝

𝜕𝑋�̃�
(𝛥𝐹𝑖𝑗)

−1
, (35) 

where 𝛥𝐹𝑖𝑗 is the incremental deformation gradient over the current time step, 𝑥𝑖 are the current 

(or deformed) coordinates and �̃�𝑖 are the coordinates at the start of the time step.  This is 

especially important for the GIMPM as the basis functions for this method rely on a regular 

background grid.  The deformation of this background grid over a time step will not change 

the basis function values but it will change the spatial derivatives of these basis functions, 

which are required to determine the nodal internal force contribution of a material point.  If this 

mapping is not included, or the spatial basis function derivatives not obtained in an alternative 

way, then the method is not actually solving (19).  This point is discussed in detail by Coombs 

et al. (2020), who proposed a previously converged Lagrangian material point formation that 

avoids this mapping by expressing equilibrium at the start of the time step.      

The issue of appropriate domain updating was also highlighted by Charlton et al. (2017), 

especially for problems involving large rotational components of the deformation gradient.  In 

this paper, the use of the right symmetric stretch matrix, 𝑈𝑖𝑗 = √𝐹𝑘𝑖𝐹𝑘𝑗, was advocated rather 



than the normal components of the deformation gradient when updating the domain lengths - 

domains can artificially collapse if they are updated according to the normal components of the 

deformation gradient.  This point was explored in more depth by Coombs et al. (2020), who 

proposed a CPDI-inspired domain updated method as the right symmetric stretch update 

method induces spurious volume changes when analysing problems involving shear 

deformation.       

Although the paper of Charlton et al. (2017) was focused on large deformation elasto-plastic 

analysis, all of the investigated problems can be simulated using the more efficient and accurate 

finite element method.  Also, the paper only included a linear elastic-perfectly plastic von 

Mises constitutive model and there may be other issues when analysing problems with more 

complex constitutive models in terms of the stability of a quasi-static implicit material point 

formulation.  In the authors’ experience, quasi-static implicit implementations of the material 

point method can suffer from issues relating to the conditioning of the global stiffness matrix.  

This issue can become more severe when considering domain-based material point methods 

due to the small overlaps between the material point domains and the background mesh.  It is 

also, in general, more of an issue with quasi-static analyses than for dynamic problems as the 

mass matrix often provides a stabilisation effect to the conditioning of the linear system of 

equations.  For quasi-static analysis, one method to reduce this issue is to include a degree of 

soft stiffness, where a small amount of stiffness is added to the global stiffness matrix based on 

the integration of the background grid using conventional Gauss quadrature (Wang et al., 

2014).  The additional stiffness is normally several orders of magnitude less than the stiffness 

of the true material1 and is chosen to balance: (i) the conditioning of the global system of 

equations and (ii) the speed of convergence of the global equilibrium equations.  The second 

 
1
 The authors have found that 1×10-6  to 1×10-9 of the Young’s modulus of the physical material is sufficient, 

however [10] suggested the much larger value of 1×10-2, which will significantly influence the convergence 

rather of the global equilibrium iterations.  



point refers to the fact that, by adding extra stiffness to the linear system, the global stiffness 

matrix is no longer a true linearization of the residual out-of-balance force of the non-linear 

problem.  Adding this soft stiffness will not change the converged solution, at least not within 

engineering accuracy, but it may change the number of iterations required to achieve this 

solution.  This point is in conflict to the results shown in (Wang et al., 2014), where the 

displacement of a cantilever beam was shown to be dependent on the soft stiffness factor 

(values between 1 × 10−1 and 1 × 10−4 were investigated).  However, the paper did not 

specify the number of iterations that have been used or the convergence tolerance adopted so 

it is possible that the analyses with larger amounts of soft stiffness had not converged to the 

same tolerance as those adopting a smaller value.  

 

3.3 Other implicit approaches to the MPM   

A number of other researchers have adopted an implicit approach to the material point method 

and investigated various aspects of the method, including: the application of boundary 

conditions (Bing et al., 2019; Cortis et al., 2018), the issue of volumetric locking with isochoric 

plasticity (Coombs et al., 2018), the suitability of different domain-based material point 

formulations to analysing problems involving large distortion (Wang et al., 2019), energy 

consistent time stepping approaches for elastic and elasto-plastic materials undergoing large 

deformations (Love & Sulsky, 2006a, 2006b) and the use of matrix free Newton-Krylov 

conjugate gradient solvers for hyperelastic materials (Nair & Roy, 2012).  Implicit material 

point methods have also been applied to the modelling of: three-dimensional multicellular 

constructs (Guilkey et al., 2006), geotechnical engineering problems (Beuth et al., 2008; Wang 

et al., 2016), in addition to a number of general benchmarking problems such as the collision 

of discs and simple beams. 



AMPLE (A Material Point Learning Environment) (Coombs & Augarde, 2020) is specifically 

focused on implicit material point formulations and has been designed as an environment for 

researchers to learn about, and try out new ideas in, the MPM.  However, being MATLAB-

based it will not offer the computational efficiency obtained by compiled codes. Another 

alternative may be Kratos Multiphysics, where simple MPM implicit implementation has been 

recently introduced (Iaconeta et al. 2017, 2019). 

 

3.4 Implicit versus explicit 

A number of papers have presented comparisons between implicit and explicit methods. 

However, the problems selected normally are based on the methodical preference of the 

authors.  That is, the authors select problems that they a priori know favour implicit or explicit 

approaches based on the thrust of the article and the points that the authors are trying to make 

rather than providing a range of problems covering the appropriate application areas of the two 

approaches.  For example, it is well known that explicit methods are suited to impact and short-

duration dynamic analyses, and implicit methods are efficient at solving low strain rate/quasi 

static problems where the bulk motion of the body is the main interest (Sulsky & Kaul, 2004).  

This has led to conflicting conclusions on the relative performance of the two approaches in 

the literature and a comprehensive comparison has yet to be published.  One difficulty here is 

the number of different explicit, semi-implicit and implicit time stepping approaches that are 

available and the lack of a common framework for comparison.   

In general explicit schemes determine the new state of the material points based on information 

from the previous timestep (or, expressed in a different way from information at the start of the 

current step) whereas implicit method use information from both the previous and current time 

steps.  For linear problems, implicit methods should be unconditionally stable for any timestep 



size, but for explicit methods the size of the allowable timestep is bounded by the CFL 

condition (or some factor of the CFL condition).  In practice, we would still bound the size of 

the timestep in implicit methods for other reasons, such as visualisation or to minimise the 

excessive motion of a material point within a timestep.  In addition to this, as we have already 

seen, MPM is inherently non-linear and there will be a limit on the allowable timestep size in 

implicit methods due to this (the same is true of PIC methods, see Cummins & Brackbill, 2002).  

Even with these limitations in place, implicit methods have been shown to allow for larger 

timestep sizes compared to explicit methods, see for example (Guilkey & Weiss, 2003; Love 

& Sulsky, 2006a; Sulsky & Kaul, 2004; Wang et al., 2016).  However, allowing for larger 

timestep sizes does not mean that implicit schemes are more computationally efficient2 as the 

cost of a timestep into the two methods are not equal; explicit steps are usually orders of 

magnitude less expensive than implicit steps due to the removal of the need to solve a linear 

system by adopting a diagonal global mass matrix.              

The original implicit MPM paper (Guilkey & Weiss, 2003) included a comparison between 

implicit and explicit approaches and the finite element method for the analysis of the 

compression of an elastic billet (a problem where implicit methods are well suited), finding 

that the proposed implicit approach offered benefits of around 10% in terms of accuracy.  

However, the impact of the time step size on the performance of the methods was not 

investigated.  Similar findings were presented by Sulsky and Kaul (2004) and in one example 

they found that their proposed implicit approach required 1.2% of the computational effort of 

the explicit solver – once again, the influence of timestep size was neglected. This point was 

investigated by Wang et al. (2016) who analysed the collision of two elastic discs and 

concluded, unsurprisingly, that larger timesteps were possible in the implicit formulation. 

 
2
 Here the term efficient refers to the balance between run time and accuracy, with the different in efficiency 

between two methods being expressed in terms of the accuracy for a given level of computational effort or the 

computational effort required to achieve a given accuracy.  



However the respective run times were not presented, so it is not possible to judge efficiency.  

As far as the authors are aware, there are no comparisons of explicit and implicit methods for 

problems involving non-linear material behaviour, such as elasto-plasticity.  This is a curious 

oversight as MPM is normally applied to, and indeed was developed for, materials undergoing 

extreme deformations and non-linear behaviour.   

Another problem that should be considered is the compatibility of different time stepping 

method with advanced constitutive formulations.  This is especially important in one of the key 

application areas of MPM – geotechnics – where the formulations are very sensitive to 

incremental inputs of stress/strain.  The improved accuracy of the implicit method may provide 

advantages here, especially in terms of avoiding spurious unloading within the stress-strain 

constitutive algorithm where the material artificially oscillates between elasto-plastic and 

elastic behaviour. 

4. Convergence and approximation errors in MPM 

Main contributors: Sołowski, Berzins, Guilkey, Möller,  Tielen 

 

4.1 Introduction 

In engineering, the given numerical method needs to be accurate enough to be useful, while 

providing results in reasonable time. The required accuracy is usually in the range of 1% for 

most engineering applications, as beyond that, the uncertainties of material parameters values, 

as well as errors due to assumed geometry and materials models are usually order of magnitude 

higher. However, to ensure the numerical errors related to discretisation and algorithms are 

negligible, typically the simulations aim is the accuracy of 0.1%. This is typically taken as an 

accuracy for a given geometry, set of constitutive models and parameters and is compared to 

the accurate analytical solution of the governing equations the numerical method solves in a 



discrete fashion. In this section, we deal with convergence of MPM to such an ideal analytical 

solution and discuss the MPM solution errors. The convergence is affected by the order of 

MPM solution, spatial discretisation and discretisation in time, with the first two factors 

discussed in this section in more detail. The errors can be reduced with the increase of grid 

density and number of material points, but also by modifying the MPM algorithm, so it is more 

accurate for given discretised geometry. 

The other problem is how to approximate the given engineering problem and solve it with 

MPM. As MPM is evolving rapidly, the best practices change. However, it is always a good 

idea to check the spatial convergence of the solution, by solving the same problem with double 

grid density (while maintaining the amount of material points per grid cell as in the initial 

analysis) and comparing the results. Any discrepancy between the two results beyond the 

accuracy we aim for (typically 1%) should lead to in-depth analysis of errors and further 

simulations with denser grids, until the accuracy of the results is sufficient for the problem. In 

principle, the influence of the time step could also be checked. However, the errors arising 

from time steps are typically much smaller than those related to discretisation, as long as the 

time step is kept well below the Courant-Friedrichs-Lewy stability condition. Additionally, the 

allowed time step size by the stability condition, automatically computed by the MPM software 

with a suitable safety margin, is affected by the grid size, hence with the spatial convergence 

study, we also reduce the errors related to time stepping. 

4.2 Background  

While there has been much analysis of particle in cell methods such as the book by Grigoriev 

et al. (2012), one of the first rigorous attempts to provide a solid theoretical basis for particle  

methods was due to Raviart (1985) who provide a mathematical introduction to the vortex 

numerical method, by starting with the numerical solution of linear hyperbolic equation of the 



first order. Typical error estimates for solutions to a linear advection equation are of the form 

given by his Theorem 4.2:  
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where σ describes a smoothing length, n is the order of a regularization scheme, m is the order 

of a quadrature rule, and h is some form of particle spacing.  

For fixed values of n, m, and σ, the optimal choice of h thus is a compromise that balances both 

contributions. In the case n = m, this results in 
2h  . In other words, the particle spacing h 

needs to be negligible compared to the smoothing length. This result has recently been 

improved by (Kirchhart & Rieger, 2019), but results of this type for the original MPM method 

are conspicuous by their absence.  The move to more general methods that make use of cubic 

splines for example somewhat eases this problem by not employing the more problematic and 

less reliable delta particle basis of the original MPM method (Steffen et al., 2008).  

Any analysis of MPM has to take into account two uncommon features of the method, both of 

which give rise to unusual computational and theoretical challenges. The first challenge is that 

particles cross cell boundaries giving rise to a grid crossing error and the second is that there 

are almost always many more particles than grid points, thus giving rise to a loss of information 

as particle values are mapped to nodal values and back again.   

4.3 Cell Crossing  

The observation that errors in both particle in cell methods and MPM increased when particles 

jumped over cell boundaries helped lead to the creation of methods such as the GIMP method 

(Bardenhagen & Kober, 2004). This increase in error was quantified by Tran et al. (2010) as 

coming from time integration discontinuities in higher derivatives of the nodal basis functions. 



The comparative lack of smoothness of the spatial basis grid functions used in MPM translates 

into a lack of smoothness in time when particles cross grid points and then have properties that 

are redefined in terms of the basis functions in the next interval. The definition of particle 

velocity updates in terms of nodal velocity values means that the higher time derivatives of the 

particle velocity are discontinuous when a particle crosses a grid point.  

For example, consider a simple 1D case (see Figure 1) and update the velocity 
n

pv
 at point 

n

px
 

using nodal accelerations 1,n n

i ia a − with a value of dt that crosses the cell boundary to get  
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 Suppose that dt is broken down into two steps 1 2dt dt dt= + to get  
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Then the difference between the two approaches is a first order error given by 
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This is one order of accuracy lower than the standard local error of a timestep. The root cause 

is the lack of smoothness of the linear interpolation associated with the linear basis functions. 

There is still a grid crossing error from the use of say cubic splines, but it corresponds to jumps 

in higher spatial derivatives of the underlying spline basis. In the same context, Steffen et al. 

(2008) shows that, in particular, the acceleration calculated using the MPM algorithm may have 

significant quadrature errors in space and discontinuities in time, both of which make second-

order temporal convergence unrealizable to the MPM practitioner. Figure 2 in Steffen et al. 



(2010) shows a sample of a typical grid acceleration field  encountered in standard MPM when 

piecewise-linear basis functions are used‡. The jump in acceleration occurs when a particle’s 

position in space crosses a grid cell boundary. The calculated acceleration is obviously not 

smooth in this case, the impact of which has repercussions on the updated velocity and 

displacement of the particle (see also section 2.4). 

4.4 The Null Space Problem 

The second major computational and theoretical issue relates to the loss of information due to 

the mapping from particles to grid points and back again. The PIC method is well-known, e.g. 

(Brackbill (1988), to have an aliasing error due to the difference between the degrees of 

freedom at the grid points of the spatial mesh cell compared to the degrees of freedom at the 

particles. This error may result in oscillatory solution values. Brackbill (1988) states that, 

because the number of particles is finite, the number of Fourier modes is also finite. Thus, when 

there are n particles in each cell, there are n times as many Fourier modes as there are grid 

points. When values are mapped from nodes to particles, the lack of resolution at the nodes 

compared to resolution at the particles can cause an aliasing error. Again, to quote Brackbill, 

“Aliases occur because all Fourier modes with wavelengths shorter than the grid spacing are 

indistinguishable at the grid points.” Early attempts to address this instability often started from 

the PIC jiggling work e.g. Brackbill & Lapenta (1994). 

While Fourier analysis is a useful way to illustrate this error, it does not provide a general 

description. This aliasing is exactly the null space error addressed in this work. Brackbill 

showed that the user of better interpolants associated with the nodes to particles mapping 

helped reduce these errors and conducted a Fourier analysis of the problem. Gritton et al. (2015) 

have shown that the mapping matrix from particles to grids as denoted by vpS
is rectangular and 

may have a nontrivial nullspace. For example, let c be a vector in 
nR . If 



 

0vpS c =
 (40) 

then we say that c is in the nullspace of vpS
.  For model problems, the nullspace is found by 

making use of its singular value decomposition, SVD. To get  

T

vpS U V= 
 (41) 

where U has dimension m by m, Σ is m by n, and V is n by n. The matrices U and V are unitary, 

meaning that the columns are orthonormal. Any vector a ∈ R m 
ma R can be expressed as a 

linear combination of the columns of U. The number of zero diagonal entries of Σ corresponds 

to the lost information in mapping from particles to nodes. This lost acceleration corresponds 

to an acceleration error. This error is then mapped onto the particles for the next timestep. 

While this null space error only shows up as missing acceleration with this matrix vpS
, when the 

particles move and the matrix changes, the null space terms will then give a sudden non-zero 

acceleration.  The solution to this problem is to use mappings with smaller null space errors 

such as those introduced in Gritton & Berzins, (2017) for the original MPM and Tran & 

Sołowski (2019) for GIMP. 

4.5 Locking and zero energy modes 

In the Finite Element Method, it has been long known that due to the inexact approximation of 

the displacement and strain fields by the elements, the elements may predict overly stiff 

behaviour of the material, dubbed as shear and volumetric locking, related to shear and volume 

deformations, respectively. The underlying theory and causes in the case of Finite Element 

Method are well given in Babuška & Suri (1992a, 1992b), with extra details related to common 

Finite Elements in MacNeal (1994). As mentioned by MacNeal (1994), “Element designers 

are more interested in finding fixes for locking than in understanding why locking occurs”. 



This statement, sadly, extends to most of the errors in Material Point Method, and in particular 

to the available anti-locking algorithms. The Material Point Method yet awaits a 

comprehensive overview of reasons for locking and estimation of related errors, similar to 

those in Babuška & Suri (1992) and MacNeal (1994) for common Finite Elements. However, 

due to similarities of Material Point Method calculations to those in Finite Element Method 

with Q4 element, locking is a significant issue in MPM. Furthermore, the Finite Element Q4 

exhibits significant locking issues, which reduces only very slowly with the increase in element 

numbers. This may be the reason why an increase of grid density is not a reasonable solution 

for locking also in MPM. Therefore, the issue of locking needs to be fixed by other means. 

The Finite Element Method offers a wealth of solutions to reduce the locking of the elements. 

The most typical one, suitable for the reduction of volumetric locking in hydro-mechanically 

coupled simulations, is reducing the integration order for the water phase. That is not yet 

adopted in MPM. However, first Mast et al. (2012) proposed an anti-locking scheme based on 

Hu–Washizu multifield variational principle. Coombs et al. (2018b) adopted another scheme 

from FEM based on the F  approach of de Souza Neto et al. (1996).  For more technical 

description of anti-locking algorithms, as applied to hydro-mechanical coupling, see section 8. 

As volumetric locking is mainly important in nearly incompressible materials, the 

developments of many anti-locking schemes link to developments for hydro-mechanically 

coupled MPM for fully saturated porous materials as well as for MPM modelling of fluids. The 

developments include, among others Iaconeta et al. (2019), Kularathna & Soga (2017a,b), Li 

et al. (2014), Yang et al. (2018), Zhang et al. (2017, 2018), Zheng et al. (2013). Yet, it seems 

that the development of a robust and efficient Material Point Method algorithm which would 

remove problems related to locking, without introducing other errors and inaccuracies, is still 

a subject worthy of investigation. 



4.6 Stability and accuracy in MPM  

The stability of MPM is challenging to address, given its nonlinear nature. Currently either a 

Fourier-based analysis, e.g.(Brackbill 1988, 2015) or energy-conservation approach is taken. 

However, Wallstedt & Guilkey (2008) and Steffen et al (2010) rightly point out that the 

nonlinear nature of the MPM scheme makes classic linear stability analysis inappropriate. 

Berzins started to address this by noting that the standard time integration methods used in 

MPM correspond to the use of the semi-implicit Euler method, or symplectic Euler-A (Berzins 

2018). The nonlinear stability of MPM is addressed by considering a one-dimensional model 

problem as an ordinary differential equations system in the values at particles and nodes. While 

this does not address the well-known issues to do with ringing that is described above, the aim 

is to consider how to bound the timestep when nonlinearity is taken into account.  

This result reflects the form of the original equations in that Young’s modulus constant E 

appears in its original form in the equation rises to the following equation:  
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where the mesh spacing is h , E is the Youngs modulus, m is the number of particles per interval 

and the maximum terms are maximum values of forces and stresses. In contrast, the usual speed 

of sound equation is given by 
sound

h
dt

E
= .  The full value of E in the equation above may be 

replaced by E  if the  equations are scaled so that this term appears in two equations , see  

Berzins (2018). This justifies the form if not the detail of the speed of sound approach. There 

is much still to be done regarding timestep choice for MPM based upon error control. 



In the area of accuracy  Steffen et al. (2010) look carefully at space and time errors and what 

degree of accuracy is seen on simple example problems, thus paving the way for many of the 

developments that followed such as the use of higher order methods in both space and time. 

Another of these recent developments is the use of functions reconstruction techniques. As 

material points move through the domain over time, the obtained accuracy and observed 

(spatial) convergence are limited. Therefore, different function reconstruction techniques have 

been applied in MPM to overcome this. The key idea of these techniques is to (globally) 

reconstruct a quantity of interest, based on the known values at the material point positions, 

and evaluate the reconstructed function at ‘optimal’ integration points. Typically, the Gaussian 

quadrature is adopted as a quadrature rule of choice to determine these positions. Moving Least 

Squares and cubic spline interpolation have been popular choices to use within MPM (Gan et 

al., 2018; Deborah Sulsky & Gong, 2016; Tielen et al., 2017; Tran et al., 2020). Alternatively, 

Taylor Least Squares (TLS) function reconstruction can be adopted. In contrast to other 

reconstruction techniques, TLS reconstruction in MPM allows for the preservation of total 

mass and linear momentum of the system and has been applied in combination with standard 

MPM, DDMPM and BS-MPM (Wobbes et al., 2019). 

Typically, MPM adopts the row-sum lumped version of the consistent mass matrix. As the 

resulting matrix is a diagonal matrix, it allows for an efficient solution of the equation of motion 

at every time step. However, lumping the mass matrix is known to limit the spatial convergence 

to O(h2). Note that this only limits the spatial convergence in practice when high-order basis 

functions (e.g. B-splines or Powell-Sabin splines) are adopted combined with function 

reconstruction techniques. Furthermore, it might lead to spatial oscillations when applied with 

PS-MPM (de Koster et al., 2020). Finally, lumping the mass matrix hinders the conservation 

of energy and angular momentum (Love & Sulsky, 2006b). 



 2.3 General Local Space and Time  Errors in MPM 

As many of the equations are similar in the different formulations of MPM it is helpful to 

identify some of the local errors in these equations for future use. For simplicity only a one 

dimensional case with the original form of the MPM method is considered, but without the 

delta functions used originally with that method at the particles. The approach described builds 

on that of (Tran et al. 2010), (Steffen et al. 2010) for time local errors of (Berzins, 2019). 

Furthermore the errors accumulated over just one step starting with zero error are considered. 

The extension to the more general case requires taking into account that every solution variable 

now carries an error from the previous step. For simple cases this analysis is undertaken by 

(Steffen et al. 2010). 

The first errors are those due to the mappings of  momentum and mass from particles to grids 

as defined by equations (9) and (10) . These errors are caused by whichever coefficients 
i

vpS  

are used and may be denoted by n

vEp  and n

vEm  respectively for momentum and mass. For 

example if linear interpolation is used we would expect that  

 
2n

pEv Ch=   (0.1) 

Where C is a generic constant that may be different each time it is used and generally depends 

on higher derivatives of the quantity being mapped. When cubic splines are used we would 

expect  

 4n

vEv Ch=   (0.2) 

Similar expressions apply in the case of  n

vEm . The second main source of error is that in the 

nodal velocity as denoted by n

vEV  at time nt . There are two components to this error. The first 

is the approximation error, n

vEa   due to the use of the mapping coefficients 
in

vpS  and depends 

on the difference between the approximate internal force int

vf  and the true internal force 
int

vf .   



The other forces that may be presented are neglected for simplicity. 

Steffen et al. consider particular instances of such errors in different cases. Hence given the 

acceleration formula in equation (14) ,   
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An approximation to this is possible by using finite differences in time on the acceleration. 

, , , , 1 , 1 , 1

1
1 1

1 1
. . .

2

np np
n i n i n i n i n i n i n

v p vp p p vp pn n
i iv v

dt
LEV S V S V h o t

m m

− − −

−
= =

 
= −  +  + 

 
 σ σ  

The errors  n

vEa  that arise from the use of the mapping coefficients 
i

vpS  are one order less of 

the nodal spacing, h,. In other words for linear basis functions the error is  

 n

vEa Ch=   (0.3) 

 In the case of  quadratic splines 2n

vEa Ch= , while for cubic splines    3n

vEa Ch= . The total 

local error from both space and time at the node over one timestep then given by  

.n n n

v v vEV dtEa LEV= +  

The errors in the position, 
n

pEX  , and the velocity 
n

pEV  of the particles then depend on both 

the fundamental mapping error associated with the coefficients 
i

vpS  and the nodal velocity error 

n

vEV  that is mapped onto the equations (15) and (16) for updating both the position of the 

particles and their velocity.  
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In these expressions the errors 
n

pEXsv  and 
n

pEVsv   are dependent on the choice of mapping 

coefficients 
i

vpS as above to give powers of the nodal spacing h.  The time local errors p

vLEX  

and p

vLEV  are  2( )O dt  from the application of the Forward Euler method to equations (15) 

and (16), respectively. 

Finally the errors in the strain field as defined by equation (18)  may be derived in much the 

same way as above. The strain field error at a particle is given by  
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In this case  the error introduced by the gradient basis 
in

vpS  is of the same order of accuracy as 

above, in other words one power of h less than the mapping associated with the coefficients 
i

vpS .    

In this first step we have assumed no errors in existing solution variables, it is straightforward 

if complex in terms of notation to extend the approach to the c as in which every solution 

variable carries and existing error.   

While of course the challenge in any such analysis relies on a precise quantification of the 

different terms defined above and in the extension to very complex problems, the above 

framework shows that error growth in MPM is first of all nonlinear and secondly combines 

spatial and temporal errors in a complex and intimate way.  This explains to some extent the 

comment in (Wallstedt and Guilkey,2008) that there was no advantage to be seen in applying 

better time integration techniques. The explanation is that unless more accurate time integration 

is combined with more accurate spatial discretization the benefits of better time integration will 

be lost. The analysis above confirms this as do the examples and experiments of (Steffen et al., 

2010). It is of course inevitable that error analysis seldom applies to the complex problems 

solved in reality and for this we need to use the method of manufactured solutions. Nevertheless 

the framework presented here illustrates some of the challenges that exist and is sufficiently 

general to apply to other MPM methods. 



4.7 Energy Conservation Errors in MPM 

A key property of MPM calculations is energy conservations as considered first by 

Bardenhagen (2002) and it is shown that the standard MPM method gives second order energy 

conservation over a timestep or first order overall. The analysis of Love & Sulsky (2006a,b)  

extends these results and shows that energy conservation is possible if a full mass matrix is 

used. The same authors also show that using a lumped mass matrix gives second order locally 

energy conservation. Other improved time integration methods based upon a central difference 

approach are considered by Wallstedt & Guilkey (2010). The relationship between MPM time 

integration and symplectic time integration methods is considered by Berzins (2019). Such 

symplectic methods have good conservation properties and the well known Stormer-Verlet 

(Berzins, 2019) method has third order accuracy locally. This method is symplectic and very 

widely used in many applications such as molecular dynamics and planetary orbits and even 

dates back to Newton as was demonstrated by Feynman. Berzins applies this method to an 

MPM model problem and proves third order energy conservation locally. Numerical 

experiments comparing the approaches on a model problem show that the Stormer Verlet 

method has better accuracy and conservation properties than the standard symplectic Euler 

(Euler Cromer) method generally used in many MPM calculations. There is clearly scope for 

applying even higher order time integration methods.  

4.8 Discussion  

Material Point Method is still a relatively new numerical method, and the optimisation of the 

method algorithm for robustness and accuracy is still ongoing. There are quite some 

developments related to error corrections and convergence in recent years, including (González 

Acosta et al., 2020; Hammerquist & Nairn, 2017; Nairn et al., 2020; Steffen et al., 2010; Sulsky 

& Gong, 2016; Tran et al., 2020; Wobbes et al., 2019). Yet, it seems that still there is much to 

uncover related to method accuracy and that creation of a robust arbitrary high order algorithm 



without any numerical issues and inaccuracies is something the MPM community will be 

working on in the coming years. 

5. Contact and boundaries in the Material Point Method

Main contributors: Sołowski, Seyedan 

One of the main advantages of the Material Point Method is that the contact between bodies is 

automatically detected, without any need for extra algorithms (Sulsky et al., 1994; Sulsky et 

al., 1995). This original non-slip contact stems from the fact that the material points data in 

each step is moved to the grid nodes, and the materials points within the grid shape function 

support area will be in contact (equations 7-14). This standard contact behaviour is little 

affected by interpolation used. However, when the particles have domains, the contact is 

initiated a bit earlier, as it is enough that part of the domain of the material point share the 

same grid node     . Yet, the results are almost the same for original MPM and e.g. CPDI, see 

attached Video 2 /3.  

Video 2 /3. Contact occurs when material points in two bodies share the same grid node, before the 

bodies starts actually being in contact (original MPM, left, CPDI, right). 

In the original MPM algorithm, the boundary conditions are imposed directly on the grid nodes 

(by overwriting the values of e.g. velocity resulting from the algorithm and projecting back the 

set velocity), leading to a complete method. The original contact and boundary conditions 

formulations are still in use. Yet, in great many applications, the non-slip contact is 

insufficient. The advanced algorithms will lead to a more physical contact, as in  Video 4/5. 



See attached video 4/5. With special contact algorithm, contact occurs when the domains of material 

points starts touching. In the figure / video, algorithm of  Seyedan & Sołowski (2019, 2021) is used, 

but any other advanced algorithm will lead to similar results. 

Similarly, also the boundaries often need a more accurate and sophisticated implementation 

than just the imposition of the conditions on the grid nodes. 

The needs drove the development of a number of contact algorithms. Bardenhagen et al. (2000, 

2001) have perhaps first widely followed contact algorithm for frictional contact, allowing for 

non-slip condition, frictional slippage and zero tensile strength. This algorithm, though very 

successful, was improved to allow very large stiffness differences between materials and a 

more elaborate cohesive-frictional shearing condition by  Ma et al. (2014). This contribution 

also includes penalty function reducing oscillations significantly in the contact computations, 

and thus reducing the need of damping, necessary for example in Andersen & Andersen (2010) 

and Nairn (2003). The contact algorithms above are still limited to enforcing the contact on the 

grid nodes and use a single grid, similarly to e.g. contact algorithm defined by Huang et al. 

(2011) and Ma et al (2010). 

A different implementation of frictional contact, in which no damping is needed, is a multi-

grid contact algorithm by Hu & Chen (2003), where contact condition is checked not by the 

centre of mass velocity field as in Bardenhagen et al. (2000, 2001), but by a sweep over the 

particles defined as contact particles, being on the outside of the modelled bodies. This leads 

to an efficient algorithm, especially in case of separation, which is achieved simply by moving 

the particles previously in contact back to separate grids. The algorithm proposed by Hu & 

Chen (2003), however, is meant mainly for large rotation and large displacement simulations, 

but had not been tested for very deformable bodies, where the outside layer of contact particles 

may be broken, leading to unphysical contact.  



There are many more modifications of the contact algorithms, including recent work of Nairn 

et al. (2020), building on the earlier work of Hammerquist & Nairn (2018). This new contact 

algorithm improves the contact, decoupling it from grid, but instead relying on logistic 

regression methods. This contact, compared to previous grid based formulations, deteriorate 

less at the edges of the domains in contact, where normal may be difficult to find, while the 

logistic regression methods can find normal vector at any point of the domain. The contact 

algorithm given in (Nairn et al., 2020) also allows for a contact of multiple materials in a given 

node, something requiring special extensions in previous algorithms.  

Somewhat similar idea, but based on B-splines instead of logistic regression methods has been 

presented by Bing et al. (2019). The paper highlights that imposing boundary conditions strictly 

on the grid nodes is sometimes inconvenient, as the boundaries may be complex. The proposed 

method allows for imposing boundary conditions on arbitrary shaped boundaries described by 

B-splines. The method is general for the case of Neumann boundary conditions, i.e. traction 

boundaries, and confined to implicit MPM in case of displacements boundaries.  One downside 

of the approach is that, when imposing inhomogeneous Dirichlet boundary conditions the 

method requires a node-boundary stencil least squares minimisation problem to be solved to 

determine the nodal values that best fit the required solution on the boundary based on the basis 

functions of the background grid.  This adds additional computational cost, but it allows for 

complex boundary conditions to be included within implicit MPMs.  It seems that the extension 

of the method to contact is quite possible, as well as employing the technique for the creation 

of the material boundaries, replacing the logistic regression methods. 

6. Fracture modelling in the Material Point Method 

Main contributors: Adibaskoro, Seyedan, Soga 

 



MPM offers great application potential in modelling dynamic fractures.      Although MPM has 

been used for calculating parameters of fracture parameters (Tan & Nairn, 2002) and fracture 

formation (Zabala & Alonso, 2011), these contributions employ implicit crack modelling using 

symmetry condition or plasticity. A true explicit fracture modelling in MPM requires solving 

three separate problems. First, enhancing MPM for modelling explicit cracks. Second, 

developing methods for calculation of cracks parameters in MPM. Third, adding the capability 

of crack propagation in MPM. This section reviews the available methods and solutions for 

each of these problems.  

6.1  MPM modelling with explicit crack 

MPM      requires modification to perform dynamic fracture analysis. Any numerical method 

for dynamic fracture mechanics should model the discontinuity of displacement and stress 

around the cracks. However     , MPM is based on continuum mechanics and therefore 

inherently incapable of      considering an explicit crack in the middle of the material      or 

modelling discontinuity.  

In common MPM algorithms, all material points send data to the nodes of one background 

grid. If there is a crack close to a node, material points from the opposite side of the crack send 

data to this node. MPM algorithm then combines the data from opposing side material points, 

updates the nodal momentum and returns the data back to the material points. As such, the 

material points from the opposite side of the crack affect each other and interact as if there is 

no crack. These interactions are unphysical and prevent MPM from modelling explicit cracks. 

Nairn (2003) introduced CRAMP to solve a MPM problem with explicit crack. CRAMP is an 

enhancement to MPM and can model explicit cracks and their discontinuities. CRAMP uses 

separate and parallel grids around the explicit cracks. Each of these parallel grids receives 

information from material points on one side of cracks. Therefore, CRAMP does not combine 



the data from opposing side material points, material points from the opposite side of crack do 

not affect each other and do not interact allowing the replication of crack discontinuity.  

CRAMP requires two separate sub-algorithms. First, a sub-algorithm for determining which 

grid a material point close to the crack should sends data to. Such a sub-algorithm is 

computationally expensive and should be written efficiently. Therefore, Nairn (2003) provides 

an optimal line crossing sub-algorithm for this purpose. Second, a contact sub-algorithm is 

necessary for material points on the opposite side of cracks. In CRAMP, the opposite sides of 

cracks have separate grids and displacements. As such, the two sides might unphysically cross-

over and a contact sub-algorithm is necessary to prevent such cross-over. Nairn (2003) 

modifies the contact algorithm of Bardenhagen et al. (2000, 2001) to provide a reliable contact 

method for crack surfaces.  

CRAMP is a capable and efficient tool for fracture dynamic modelling. Simulations of CRAMP 

show good results when compared to experiments and Finite Element Method solutions (Nairn, 

2003). Nairn (2007) shows the capability of CRAMP in radial crack propagation of wood, 

while  Nairn (2016) uses CRAMP for simulation of chip curling as part of wood cutting 

process. Furthermore, CRAMP is computationally efficient and a well-written algorithm for it 

has around 10% higher computational cost than MPM (Nairn, 2003).  

6.2 Fracture parameters and propagation 

From establishing the capability of simulating discontinuity, the      progression naturally went 

towards introducing crack propagation. J-integral was made possible with MPM and the 

discrete crack formulation (Guo & Nairn, 2004); a sensible choice to avoid calculations 

involving singularity around the crack tip. The analytical formulation for the J-integral was 

proposed by Cherepanov (1979), which maintains path independence despite the presence of 



dynamic effects. The recommended integration path is to encircle the crack tip within a 4x4 

grids, although any other arbitrary closed paths are, analytically speaking, equally correct. 

With J-integral implemented, crack propagation becomes possible (Nairn & Guo, 2005). 

Although the energy release rate (G) from J-integral is compared to the critical value (Gc), no 

actual energy dissipation takes place due to the separation of crack surfaces. Instead, the stored 

elastic energy before propagation is released during propagation into the surrounding material 

in the form of mechanical stress waves. The loading process needs to be slow enough that crack 

would not propagate too quickly, allowing the resulting stress waves to dissipate via e.g. 

material damping or energy-absorbing boundaries. This phenomenon limits the application of 

the method to quasi-static cases. 

In order to properly dissipate energy representing Gc, Nairn (2009) and Bardenhagen et al. 

(2011) introduce cohesive force immediately behind the crack tip. Consequently, physical 

phenomena such as energy dissipation, cohesive/process zone, and rising R-curve (at the start 

of propagation) are represented. Furthermore, without the need to wait for dissipation of 

mechanical stress waves     , simulation of dynamic cases become possible. 

6.3 Other Methods 

Besides the techniques revolving around the concept of multiple background grids, several 

studies have shown successful implementation of various methods to simulate fracture in 

MPM. On the side of the discontinuous approach, Schreyer et al. (2002) proposed a method of 

fracture simulation by defining fracture surface and evolving traction as decohesion progresses, 

which paper was published before the first paper of CRAMP. The method requires the crack 

path to be known a priori, therefore the discussion is limited to simulating delamination 

problems. Liang et al. (2017) modified the particle displacement approximation by introducing 

the discontinuous enriched function to represent the crack and simulated the crack propagation 



with J-integral and stress intensity factors. Another more recent discontinuous approach to 

fracture in MPM is published by Moutsanidis et al. (2019), which identifies separation via 

damage gradient partitioning similar to the method by Homel et al. (2017) but maintaining the 

use of only one background grid. Most of other developments in the discontinuity approach are 

related to the concept of CRAMP, i.e., multiple background grids. 

Besides the discontinuous approach, the introduction of phase field, damage, and softening can 

also introduce a “smeared” discontinuity resembling a crack. Unlike the discrete approach, this 

continuous approach, in principle, retains continuity in the numerical discretization technique. 

However, a continuous approach may become more expensive than a discrete approach, as a 

sudden enough jump in the displacement field requires a significantly finer mesh. For example, 

the implementation of phase field for fracture simulation generally requires mesh size smaller 

than the process zone of the crack propagation. Figures 11 and 12 show examples of discrete 

and continuous approaches and how they differ. 

 

Figure 11 An example of discrete approach (CRAMP), fracture breaks continuity of the discretization 

method Nairn (2003) 

 



Figure 12 An example of continuous approach (Phase Field Fracture), discretization method still 

maintains continuity Kakouris & Triantafyllou (2017) 

Kakouris & Triantafyllou (2017) introduced phase field with damage to MPM for the first time 

to model fracture behaviour, showing e.g. convincing pure mode I and pure mode II simulation 

results on a single-edge-notched specimen. In addition, the paper also introduced a method to 

identify an explicit crack path throughout the development of the phase field. Further 

advancement in this method allows for application in anisotropic medium (Kakouris & 

Triantafyllou, 2018). Kakouris and Triantafyllou (2019) then introduced the concept of surface 

energy, thus keeping the simulation consistent with Griffith’s theory of fracture (Griffith, 

1921). Wolper et al. (2019) also implemented phase field and damage for simulating dynamic 

fracture in MPM for the purpose of animation, resulting in more convincing destruction of 

jelly-like and other organic materials than traditional MPM. Cheon & Kim (2019) proposed an 

adaptive refinement process for the MPM coupled with a phase-field fracture model to simulate 

crack propagation in brittle materials. 

Plasticity and softening are another approach for simulating material separation to some extent. 

Many simulations of landslides show shear bands resembling fractures and separation of 

chunks of material with plasticity, e.g. Mohr-Coulomb, Cam-Clay, and their derivatives. For 



example, see e.g. (Alonso et al. 2015; Andersen & Andersen, 2010; Soga et al., 2016; Yerro et 

al., 2016). In addition, Zabala & Alonso (2011) simulated the fracture formation of Aznalcollar 

dam progressive failure employing the Mohr-Coulomb plasticity, while Shen (2009) used a 

Drucker-Prager model, a rate-dependent damage model and a bifurcation-based decohesion 

model to describe the behaviour of compression, tensile and localization respectively, and 

simulated the glass fragmentation under impact. 

6.4 Benefits of MPM in fracture modelling 

One of the advantages of MPM is the ability to simulate large deformation and displacement. 

Therefore, MPM inherently offers the capability of simulating large crack opening and closing, 

difficult to replicate in other numerical methods. Such capability is shown in the following 

simulation of a ring with radially-arranged initial cracks, which schematic shown in Figure 13. 

The simulation is part of a work in progress by Adibaskoro et al. (2020). 

Figure 13 Ring simulation with radially-arranged initial cracks 

Fracture is modelled by employing CRAMP, modified for efficient multiple crack path 

simulation. Rankine criterion (Rankine, 1857) determines whether propagation occurs, while 



the direction of maximum principal stress dictates the direction of propagation. The simulation 

utilises CPDI MPM. 

In the beginning, tension at the crack tips results in crack propagation up to the uncrackable 

region (see Figure 14). Further loading opens the crack up to the maximum displacement shown 

in Figure 15. Note the separating blue and red lines, indicating the crack surfaces. After the 

load is completely released, the ring goes back to roughly its initial size with the cracks 

closed (see Figure 16). Whole simulation is visible in video 6. 

(a) (b) 

Figure 14 In the beginning of simulation, before (a) and after (b) propagation occurs. 



Figure 15 Maximum crack opening. 

Figure 16 Cracks closing after load is released. 

See attached video 6. Ring simulation with radially-arranged initial cracks 

7. Two and three phase continua modelling in MPM

Main contributors: Tran, Soga 

7.1 Overview of literature 

MPM can be used to model coupled solid-fluid interaction problems. Recent development on 

the coupled hydro-mechanical MPM formulations can be categorized into two approaches: 

one-layer material-point formulation and double-layer material-point formulation. The one-

layer material point formulation uses only a single set of material points to represent both the 

solid and liquid phases. For example,  Zhang et al. (2008) proposed a velocity - pressure (vs-

pw) formulation in the one-layer MPM framework and used it to solve a problem involving the 

impact of solid bodies in a saturated porous media. Similarly, Zabala & Alonso (2011) applied 



the vs-pw MPM formulation with strain softening Mohr-Coulomb to model the progressive 

failure of Aznalcollar dam. Zheng et al. (2013) implemented the vs-pw MPM formulation for 

the Convected Particle Domain Interpolation. Pinyol et al. (2018) extended velocity - pressure 

(vs-pw) formulation to the velocity – pressure - temperature (vs-pw-T) formulation to study the 

thermal effects on landslide mobility. Apart from the velocity - pressure (vs-pw) formulation, 

the velocity - velocity vs-vw scheme brings several advantages such as (i) simpler imposing of 

impervious boundary condition, (ii) no need for zero pressure detection and (iii) being suitable 

for large deformation at failure when the separations between liquid and solid phases may 

occur. Later, the vs-vw formulation was extended into the three-phase formulation for modelling 

unsaturated soils by using the three momentum balance equations (vs-vw-va) of Higo et al 

(2010) with the coupled MPM–FDM, and by Yerro et al. (2015). An alternative approach is to 

adopt the degree of saturation into the effective stress tensor with only two momentum balance 

equations (vs-vw) to model the rainfall-induced slope failure by Abe et al. (2014),  Bandara & 

Soga (2015) and Wang et al. (2018).  

Apart from the one-layer formulation for multi-phase coupling, another alternative way to 

model the soil-water interaction is to use a double-point MPM formulation. It utilises two sets 

of Lagrangian material point layers to consider solid and water layers. Mackenzie-Helnwein et 

al. (2010) consider the momentum balance equation for each phase, along with drag interaction 

models to solve the acceleration of each phase in the Eulerian formulation. This approach 

requires drag interaction models to capture the interaction between phases through drag forces 

that occur due to the relative motion of the phases. Abe et al. (2013) and Bandara & Soga 

(2015) use MPM to model saturated soil with a solid skeleton and pore water material point 

layers while using the effective stress approach to capture the solid skeleton behaviour. Abe et 

al. (2013) considered the Biot’s mixture theory formulation while neglecting the relative 

acceleration of water with respect to the solid skeleton. This requires the velocity of the water 



phase to be computed at each time step using the generalised Darcy’s equation, which may lead 

to limitations in modelling rapid motions. Bandara & Soga (2015) derived a coupled MPM 

formulation based on the mixture theory approach considering the relative acceleration of water 

with respect to the solid skeleton. This method allows modelling of extremely rapid flows while 

also conserving the mass of both solid skeleton and pore water.  

Use of two material point layers is extremely helpful when modelling soil–water interaction 

problems such as submarine landslides, dredging and erosion modelling. The two-layer 

formulation provides opportunities to solve dynamic flow problems in geomechanics such as 

internal and external erosions as well as fluid flow failures (seepage failures). The two-layer 

approach was adopted to study different strategies of modelling dragging interactions; for 

solid-fluid interaction in animation (Gao et al., 2017; Tampubolon et al., 2017); combine with 

the DDMP ( Tran et al. 2017; Tran & Sołowski 2019) to model the large consolidation; 

combine with the GIMP (Liu et al., 2017) and to develop the two-layer approach with a 

thermodynamic constitutive model (Baumgarten & Kamrin, 2019). For instance, it allows 

modelling of fluidisation of soil particles at the water interface and simulations of internal 

erosion by transferring a portion of soil particle mass to fluid particle. Baumgarten & Kamrin 

(2019) use this model to show complex fluid–grain interactions under dilation and flow such 

as viscous inertial rheology of submerged wet grains under steady shearing flows and the 

change in the effective viscosity of the fluid due to the presence of suspended grains. The 

existence of two layers of material points results in greater computation time, and careful 

modelling of interface regions that separate saturated soil from dry soil and free water is 

required. Table Error! Reference source not found.2. 

Table 2. Summary of coupled hydro-mechanical MPM formulation  



Type Method Interpolation 

based on 

Coupled 

formulation 

Application 

single-point for 

saturated soils 

Zhang et al. (2009) Linear basis vs-pw solid bodies impact 

to saturated porous 

media 

Zabala & Alonso 

(2011) 

Linear basis + 

one-point 

quadrature  

vs-pw Aznalcollar dam 

failure 

Zheng et al. (2013) CPDI vs-pw solid bodies impact 

to saturated porous 

media 

Jassim et al. (2013) Linear basis + 

one-point 

quadrature 

vs-vw Wave attack on sea 

dike 

Bandara et al. 

(2016) 

Linear basis + 

one-point 

quadrature  

vs-vw Rainfall-induced 

slope failure 

Wang et al. (2018) Linear basis + B-

bar 

vs-vw Rainfall-induced 

slope failure 

Pinyol et al. 2018 

[27] 

Linear basis + 

one-point 

quadrature 

vs-pw-T Thermal effects in 

landslide 



single-point for 

unsaturated 

soils 

Higo et al. (2010) Linear basis vs-vw-va Seepage failure 

embankment 

Yerro et al. (2015) Linear basis + 

one-point 

quadrature 

vs-vw-va Rainfall-induced 

slope failure 

double-point 

for saturated 

soils 

Mackenzie-

Helnwein et al. 

(2010) 

Linear basis vs-vw Study different 

phase interactions 

Abe et al. (2014)  GIMP vs-vw Seepage failures 

Bandara & Soga  

(2015) 

Linear basis + 

one-point 

quadrature 

vs-vw Seepage failures 

Tran et al (2017), 

Tran & Sołowski 

(2017, 2019) 

DDMP vs-vw Large strain 

consolidation 

Liu et al. (2017) GIMP vs-vw Seepage failures 

Tampubolon et al. 

(2017)  

APIC + B-spline vs-vw Dam breach 

animation 

Gao et al. (2018) APIC + B-spline vs-vw Particle-Laden flow 

animation 

Müller & Vargas 

(2019)  

GIMP vs-vw Slope under a rock 

block impact 



Baumgarten & 

Kamrin (2019) 

Cubic Spline vs-vw Saturated mixture 

in many flow 

regimes 

Yamaguchi et al. 

(2020) 

B-Spline vs-vw Wave collision to 

sandpile 

7.2 Governing Equations for the hydro-mechanical coupling 

This section summarizes two different coupled hydro-mechanical formulations including the 

velocity - pressure (vs-pw) formulation and the velocity - velocity (vs-vw) formulation. 

7.2.1 Notation 

Solid phase 


s
 Solid density 

𝑎𝑠 Solid acceleration 

𝑣𝑠 Solid velocity 

𝑏  body acceleration 

𝑛 porosity 

𝑘 permeability 

𝑔 gravitational acceleration  

Liquid phase 


w

 Liquid density 

𝑎𝑤 Liquid acceleration 

𝑣𝑤 True liquid velocity 

𝑞𝑤 Darcy velocity 

𝑝𝑤 pore pressure 

𝐾𝑤 bulk modulus of liquid phase 

𝐾𝑠 bulk modulus of solid phase 

7.2.2 Velocity - pressure (vs-pw) balance equations 

Considering the relative acceleration of liquid with respect to solid skeleton is negligible 

(𝑎 = 𝑎𝑤 = 𝑎𝑠). The momentum balance equation for the mixture (solid and liquid phase) is: 

 𝐚 = .  + 𝐛 (43) 



where  is the total stress,  = (1 − n)
s
+ n

w
. The liquid momentum balance equation is: 

 𝐪𝐰 = −
k


w

(pw − 
w
𝐛 + 

w
𝐚) (44) 

The gradient of pore water pressure is derived from the fluid mass balance equation leading to: 

 𝑝𝑤

𝑡
= −

𝐾𝑤

𝑛
[𝛻. 𝑞𝑤 + 𝛻. 𝑣𝑠] 

(45) 

7.2.3 Assumptions 

Several assumptions are made for the hydro-mechanical coupling MPM formulation including: 

- Solid and Liquid are described in a Lagrangian formulation, 

- Solid grains are incompressible while the fluid is compressible, 

- Isothermal condition, 

- No mass exchanged between solid and liquid phase, 

- Terzaghi’s effective stress is applied, 

- Darcy law is applied. 

7.2.4 Velocity - velocity (vs-vw) balance equations 

8. The momentum balance equation for the liquid phase is: 

 n
w
𝐚𝐰 = −npw + n

w
𝐛𝐰 − 𝐟𝐝 (46) 

9. where 𝐟𝐝 is the dragging force. The momentum balance equation for the solid phase is: 

 (1 − n)
s
𝐚𝐬 = . ′ − (1 − n)pw + (1 − n)

s
𝐛𝐬 + 𝐟𝐝 (47) 

The solid mass balance equation is: 

 𝑛

𝑡
= (1 − 𝑛)𝛻. 𝑣𝑠  

(48) 

The gradient of pore water pressure is derived from the fluid mass balance equation leading to: 



 𝑝𝑤

𝑡
= −

𝐾𝑤

𝑛
𝛻. [𝑛𝑣𝑤 + (1 − 𝑛)𝑣𝑠] 

(49) 

Decomposing the right-hand slide results to: 

 𝑝𝑤

𝑡
= −

𝐾𝑤

𝑛
[𝑛𝛻. 𝑣𝑤 + (1 − 𝑛)𝛻. 𝑣𝑠 + (𝑣𝑤 − 𝑣𝑠)𝛻𝑛] 

(50) 

9.1.1 Terzaghi effective stress concept 

Reviewing the saturated porous media, the total stress  in the saturated mixture can be defined 

with the Terzaghi’s effective stress as: 

 
 = ′ − 𝐩𝐰 

(51) 

where ′ is the effective stress and 𝐩𝐰 = pw𝐈 with I is the identity matrix and 𝒑𝒘 is the value 

of the pore water pressure. The momentum balance equations are written separately for each 

phase.  

9.1.2 Darcy dragging force 

The dragging force determined from the Darcy law with a permeability 𝑘 as follows: 

 
𝐟𝐝 =

n2
w
g

k
(𝐯𝐰 − 𝐯𝐬) 

(52) 

 

9.1.3 Stability of numerical solution 

In the explicit MPM formulation, the Courant-Freidrichs-Levy condition (CFL) is commonly 

used to determine an appropriate time increment to obtain a stable numerical solution. The time 

increment is selected regarding the stiffness of the materials as (Bandara & Soga, 2015): 

 
𝑡 = 𝐿/𝑐 

(53) 

where c is calculated as: 



 

𝑐 =
√

(
𝑛
𝐾𝑤

+
1 − 𝑛
𝐾𝑠

)
−1

+
4
3𝐺

(1 − 𝑛) 𝑠 + 𝑛 𝑤
 

(54) 

However, the CFL condition, which was used for the linear stability analysis, does not always 

ensure a stable non-linear solution for the MPM. Therefore, Jiang et al. (2017) and Berzins 

(2018) proposed formulations allowing to calculate the critical time step depending on the 

maximum velocity of the material points. Furthermore, for the low permeability materials, the 

permeability time dependent criteria should be satisfied as: 

10.  t =
2̃k


w

 (55) 

where ̃ = (1 − 𝑛)
s
+ 𝑛

w
+ (

1

𝑛
− 2) 

w
 (Mieremet et al., 2016). 

10.1 Volumetric locking 

Some instabilities in the Finite Element Method, also occur in the MPM. Mast et al. (2012) 

demonstrated a kinematic locking, including a volumetric locking for incompressible materials. 

For the explicit hydro-mechanical coupling MPM formulation, the water bulk modulus is 

extremely high, leading to volumetric locking behaviour in a similar way to one-phase MPM 

formulation with nearly compressible materials. To overcome the volumetric locking in the 

explicit hydro-mechanical coupling MPM formulation, Yang et al. (2018) proposed the cell-

based algorithm, which averages the strain rate of the material points in a cell. Then, the filtered 

strain rate 𝑝,𝑓𝑖𝑙𝑡𝑒𝑟
𝑡  will be calculated as: 

p,filter
t+1 = c

t+1   and    c
t+1 =

∑ mpp
t+1

p

∑ mpp

 (56) 

Alternatively, the node-based algorithm, on the other hand, calculates the filtered strain rate 

by a nodal interpolation as follows: 

p,filter
t+1 = ∑Sipi

t+1

i

   and    i
t+1 =

1

mi
t+1 ∑Sipmpp

t+1

p

 (57) 



Bandara & Soga, (2015) and Wang et al. (2018) have been adopted the B-bar interpolation by 

replacing the gradient mapping matrix B-matrix  

𝐁𝒔𝒑 =

[
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with the B-bar matrix, for example in the plane strain configuration) as: 

𝐁𝒔𝒑 =
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 (59) 

On the other hand, Coombs et al. (2018) adopted the F-bar method (de Souza Neto et al., 1996) 

developed for the Finite Element Method. If the liquid phase is modelled by using the weakly 

compressible material, the filtered deformation gradient 𝐅p,filter
t+1  is calculated as follows: 

𝐅p,filter
t+1 = (

Jc
Jp

)

1 3⁄

𝐅p
t+1 (60) 

where Jp = det(𝐅p
t+1) is the determinant of the updated deformation gradient and Jc =

det(𝐅c
t+1) is the determinant of the updated deformation gradient at the centroid of the cell, 

which is approximated by the ratio of the current volume  Vp
t+1 and initial volume Vp

o of all 

material points np in that cell as:  

Jc =
∑ Vp

t+1np

p=1

∑ Vp
onp

p=1

 (61) 

Then, the velocity gradient is modified to be consistent with the modified deformation 

gradient as follows: 

  
𝐯p,filter

t+1 = 𝐯p
t+1 + 𝐈(

log (
Jc
Jp

)

3dt
) (62) 



where 𝐈 is the identity matrix and dt is the time step. 

10.2 Treatment of pore pressure oscillation 

The common approach to deal with the pore water pressure oscillation in the Material Point 

Method is to average pore water pressure of the cell (Bandara & Soga, 2015) instead of the 

pore pressure of the material points as follows: 

pwc
t+1 =

∑ pwp
t+1

p

Np
 (63) 

where 𝑁𝑝 is the total number of the material points in a cell. Then, the one-point quadrature 

rule will be used to calculate the internal forces of the liquid phase. This approach is simple to 

use but the pore water pressure in a cell is constant leading to the first-order accuracy. In 

general, the pore-water pressure comes from the null-space instability of the Material Point 

Method as demonstrated by Tran et al (2017) and Tran & Sołowski (2019) to remove the null 

space errors, a null space filter is proposed to filter the pore pressure oscillations by using the 

dual-domain technique and a QR decomposition. In this method, the liquid internal forces are 

updated as follows: 

𝐟wi
int,t = ∑ ∇Si(𝐱wp

t )(𝐱wp
t )𝐩wp

t Vwp
t  − ∑𝐩wj

t  . ∫ Sj∇Sidv
 𝑤

Nn

j=1

Nwp

wp=1

 (64) 

where (𝑥𝛼𝑝
𝑡 ) is a weighted function evaluated at the material point 𝑥𝛼𝑝

𝑡  to switch different 

version of MPM including MPM, GIMP and DDMP. The nodal pore water pressures for the 

liquid phase 𝑝𝑤𝑗
𝑡   at the neighbour nodes j are calculated as: 

𝐩wj
t =

1

Vwj
∑ Sj(𝐱wp

t ) (1 − (𝐱wp
t ))𝐩wp

t Vwp
t

Nwp

wp=1

 (65) 

The liquid strain increments are updated using the dual-domain, the first is the particle-based 

liquid strain increments are calculated as follows: 



 
∆wp,1

t+1 = ∑(∇Si(𝐱wp
t )𝐯wi

L + (∇Si(𝐱wp
t )𝐯wi

L )
T
)

Nn

i=1

 
(66) 

The second is the grid-based liquid strain increments are calculated as follows: 

 
∆wp,2

t+1 = ∑Si(𝐱wp
t )∆wj

t

Nn

i=1

 
(67) 

where nodal strain increments ∆ 𝑤𝑗
𝑡  calculated as: 

 
∆wj

t =
1

Vwj
∑𝐯wi

L ∫ Sj∇Sidv

 w

Nn

i=1

 
(68) 

The final strain increment vectors ∆ 𝛼𝑝
𝑘+1 is calculated with the weighted function (𝑥): 

 
∆αp

t+1 = (𝐱αp
t )∆αp,1

∗ t+1 + (1 − (𝐱αp
t )) ∆αp,2

t+1  
(69) 

where ∆αp,1
∗ t+1  is the null-space filtered value of the particle-based liquid strain increments. 

Details of the null-space filter is described in detail by Tran & Sołowski (2019). 

Jassim et al. (2013) first applied a fractional time stepping method originally developed for 

mixed finite elements for dynamic poromechanical problems. This method performs well for 

dynamic problems in the undrained limit, but it is conditionally stable in time and does not 

cover problems in drained conditions. More recently, Yamaguchi et al. (2020) implemented 

this fractional step projection method for the time discretization of the momentum equation of 

the water phase showing the robustness and efficiency can be improved. Zhao & Choo (2020) 

instead used the polynomial pressure projection (PPP) method, which was initially developed 

for mixed finite elements for coupled poromechanics. Stabilization terms are augmented to the 

balance of mass to make equal-order mixed discretization stable even in the undrained limit. 

They implemented it in a fully-implicit MPM code and showed the use of standard low-order 

interpolation functions coupled with this stabilization method for undrained and drained 

poromechanical problems. Both techniques are used to reduce the pressure oscillations and 

strict restriction of the time step size due to the high bulk modulus of water and low 

permeability.   



11. Coupling Material Point Method with other methods 

Main contributors: Sołowski, Berzins, Guilkey 

 

7.1 Coupling with the Finite Element Method 

The coupling of Material Point Method with Finite Element Method in a single simulation is 

quite common. Such coupling allows to use the benefits of Finite Element Method at small 

strains and displacements, while using MPM in the part of domain where displacements and 

deformations are very large. There are many formulations for the coupling, but perhaps the 

formulation of (X. Zhang et al., 2006) with further developments  (Y. P. Lian et al., 2011; Y.P. 

Lian et al., 2011; Yan Ping Lian et al., 2014) , culminating in (Chen et al., 2015), is the one 

most worthy of investigation. The coupling uses the multi-mesh concept, with the coupling 

done essentially via contact algorithm. The contact between material points and finite elements 

is treated as particle to surface Coulomb friction contact developed by (Z. T. Ma et al., 2010). 

This means that the consistent meshing between FEM and MPM domains is not needed, while 

the coupling efficiency is much higher than that in previously developed methods. Further 

evolution of this algorithm include (Y. Lian & Zhang, 2018), while an alternative algorithm is 

given e.g. by (Y.-J. Cheon & Kim, 2018). 

7.2 Coupling with Discrete Element Method 

The Material Point Method and Discrete Element Method for some time has been seen as 

competitors. That is incorrect – the methods base on very different assumptions, as MPM is a 

continuous method, while Discrete Element Method bases on modelling of number of usually 

rigid particles. The methods has been compared side to side many times, including, among 

others, (Ceccato et al., 2018; Coetzee, 2014; Coetzee et al., 2007; Kumar et al., 2013, 2017)  

Yet, as those methods aim at different description of material, it is sometimes of use to couple 



them together in a single simulation. such coupling often takes as basis coupling algorithms of 

Discrete Element Method with the Finite Element Method, e.g. (N. Guo & Zhao, 2014).  

Recent examples of MPM-DEM coupling include (W. Liang & Zhao, 2019; Liu et al., 2018; 

Y. Yang et al., 2017)  Taking the most recent contribution by (W. Liang & Zhao, 2019) which 

extends and improves the approach of (Liu et al., 2018), coupling is achieved by computing 

stress based on computing the incremental displacement gradient, transferring it to the 

representative volume element made of Discrete Element particles, and based on calculations 

with Discrete Elements, the resulting stress transferred back to the MPM solver. Other option 

for coupling is related to use of interfaces, and solving a contact problem when the discrete 

element particles are entering MPM zone, similarly to (Y. Yang et al., 2017). 

7.3 Coupling with Computational Fluid Dynamics 

While MPM alone is capable of some very challenging fluid-structure interaction (FSI) 

simulations, such as shaped charge jet formation (where the explosive products of reaction are 

largely contained) general fluid flow calculations are typically best done with Eulerian 

algorithms.  FSI approaches are typically divided into “separated” and “averaged”.  In the 

former, the fluid flow takes place in a domain that is distinct from the solid mechanics portion 

of the simulation, with interactions only occurring at the interface between the two domains.  

In the latter, there is a possibility that all material phases can exist in some quantity at any point 

in a common domain.  It is in this approach that MPM has found utility. 

Kashiwa and Rauenzahn described a multi-material compressible flow formulation in a series 

of technical reports and publications (Kashiwa & Rauenzahn, 1994a, 1994b, Kashiwa, 2001). 

There, a set of equations are developed for the conservation of mass, momentum and energy 

for an arbitrary number of materials, any or all of which may exist at any point in the domain 

at any time.  Along with these quantities, evolution equations are proposed for temperature, 



specific volume, volume fraction, deviatoric stress and pressure.  These equations are solved 

using a “cell-centered”, multi-material ICE (for Implicit, Continuous fluid, Eulerian) algorithm 

that uses operator splitting to divide each simulation timestep into a Lagrangian portion and an 

advection step.  In the Lagrangian phase, the effects of the physical processes that an element 

of material is subjected to, including interaction with other materials, are computed.  In the 

Eulerian phase, the updated material state is moved according to local velocities. 

In FSI simulations, which are a special case of multi-material flow, MPM can fill a few 

important roles.  First, material points provide a place to store history dependent material state 

data.  Second, since MPM advection is free from diffusion, the interface between fluid and 

solid is maintained.  Implementation details of this approach are given by Guilkey et al. (2007), 

but the basic idea is that, at the beginning of a timestep, solid material data is projected to the 

nodes of the computational grid in the usual MPM fashion.  From there, these data are collected 

at the cell centers of the grid.  Next, the Lagrangian portion of the calculation is carried out for 

all materials, after which change in state for the solid materials are interpolated back to the 

nodes, and the particles are updated in the usual MPM manner.  Meanwhile, the fluid material 

is mov ed using an Eulerian advection scheme. The basic steps of the algorithm are: 

2. Interpolate Particle state to grid. MPM  

3. Compute the equilibrium pressure. ICE  

4. Compute face centered velocities for the Eulerian advection. ICE  

5. Compute sources of mass, momentum and energy as a result of phase changing 

chemical reactions. BOTH 

6. Compute an estimate of the time advanced pressure. ICE 

7. Calculation of face Centered Pressure using a density weighted approach. ICE 

8.  Material Stresses calculation. MPM 



9. Compute Lagrangian phase quantities at cell centers. ICE 

10.  Calculate Momentum and heat exchange between materials. BOTH  

11. Compute the evolution in specific volume due to the changes in temperature and 

pressure during the foregoing Lagrangian phase of the calculation. ICE 

12.  Advect Fluids For the fluid phase. ICE  

13. Advect Solids For the solid phase, interpolate the time advanced grid velocity and the 

corresponding velocity increment back to the particles, and use  these to advance 

the particle’s position and velocity, respectively. MPM  

This technique has been implemented in Uintah (Parker et al., 2006) as MPM-ICE, and has 

been used to investigate FSI scenarios ranging from explosions of energetic devices to flow 

over human vocal folds and the dynamic growth and shrinkage of silicon battery anodes 

(Gritton et al., 2017). Additionally, a variant of this approach is frequently used in which the 

solid material, represented by MPM particles, is used as an embedded boundary condition, 

enabling easy insertion of complex geometry into a flow field. 

 

 

 

  



8. Numerical Examples

Main contributors: Tran, Guilkey, Seyedan 

9.1 Landslide simulations 

In 1994, a sensitive clay landslide occurred in Sainte-Monique, Quebec. The landslide was 

characterized as a spread with horsts and grabens observed on site. The spreads could be 

classified as an upward progressive failure because the trigger mechanism (e.g., erosion, 

excavation) causes a horizontal failure surface propagating upward. This failure includes two 

processes: (i) the propagation of a horizontal quasi-static failure surface (shear band) and (ii) 

the extension and dislocation of the soil mass above the remoulded shear surface, forming hosts 

and grabens. We use the Uintah software with the GIMP interpolator to replicate the spreads. 

The soil model and MPM model were coupled and validated with various benchmarks (Tran 

et al., 2017, Tran et al. 2017), see Video 7. 

fallcone.mpg

See attached video 7. Fall cone validation of the MPM for sensitive clays (Tran et al., 2017). 

Figure 17 Schematic of the slope 

Figure 17 shows the schematic of a 2D plane strain numerical model. The initial height of the 

slope was about 16.7m with the inclination of approximately 24 degrees. The unit weight of 

the clay is 16 kN/m3. In the numerical model, the square grid resolution is 0.2 x 0.2m with 4 



material points per cell. The left and the right boundary are fixed in the horizontal direction 

while the bottom boundary is fixed in the vertical direction. The initial stress condition was 

generated in the drained condition with typical drained shear strength of Canadian sensitive 

clays (cohesion (c’) and friction angle (’) of 10 kPa and 25-40° (Locat et al., 2015). Because 

the spread failure occurs rapidly, the soils are modelled in the undrained condition with 

undrained shear strength obtained from soil investigations (Locat et al., 2015).The erosion at 

the toe of the slope triggered the failure of the slope. The progressive failure simulation 

represents the erosion as a small amount of soil excavated on the toe of the slope. 

9.1.1 Soil model 

The undrained behaviour of clay is described by an elasto-plastic Tresca material model with 

a non-associated flow rule. Some important mechanical behaviours of clay are supplemented 

in the model, including the strain-rate effect, the shear strength degradation effect on the 

sensitive clays. The effect of the strain rate was captured by using a power law with the strain 

rate parameter  proposed by Einav and Randolph (Einav & Randolph, 2005): 

 su

su,ref
= (




ref

)


 

 (70) 

Also, the dynamic shear modulus depends on the shear strain rate (Sorensen et al., 2010) as: 

 
Gu() = Gu,ref (




ref

)



 (71) 

The same parameter  keeps the elastic shear strain value constant when the shearing rate 

changes. In the numerical model, the shear strain rate  is computed from the strain rate tensor 

as: 

 
 =

1

2
√2(ii − jj)

2
+ 3ij

2 (72) 



Apart from strain rate effects, clays show a shear strength degradation, for example sensitive 

clays after the maximum shear strength is mobilized. Therefore, the model degrades the 

undrained shear strength with the increase of the shear strain (Einav & Randolph, 2005) as 

follows. 

 
su(, St) = su,ref[

1

St
+ (1 −

1

St
)e−3/95 (73) 

where  is the current accumulated shear strain, 
95

 is the accumulated shear strains required to 

obtain 95% reduction of shear strength and the sensitivity 𝑆𝑡 is the ratio of undisturbed to 

remoulded undrained shear strength sur,ref: 

 St =
su,ref

sur,ref
 (74) 

9.1.2  Soil investigation and initial condition 

Figure 18 Initial stress condition along the slope 

Canadian sensitive clays, in drained condition, have typical value of cohesion (c’) and friction 

angle (’) of 10 kPa and 25-40°, respectively (Lefebvre, 2017). These values are obtained based 

on drained triaxial compression tests with the range of reconsolidation pressure of 5-30 kPa 



and pre-consolidation pressure from 100 – 400 kPa. Therefore, the initial condition is generated 

with Mohr-Coulomb model with cohesion of 10kPa, friction angle of 30o and zero dilatancy 

angle. The initial stress in the pre-failure condition was generated by the gravity loading with 

the earth pressure coefficient Ko of 0.5 (typical value of normally consolidated clays). Figure 

18 present the initial stress of the slope. The soil investigation found a thick brown sand 

reaching 2m from the ground surface. The undrained shear strength for this layer is assumed 

to be constant. Below the sand layer, there is a sensitive, normally consolidated clay reaching 

the depth of 44m. The undrained shear strength of that sensitive clays was determined by the 

fall cone tests, the vane shear test and the CPTUs. The undrained shear strength profile 

determined from these in-situ tests are used here to calibrate the numerical parameters of the 

constitutive model (see Figure 19).  Also, stress-strain behaviour is calibrated from the direct 

shear test, leading to parameter 95 being 120% to replicate the softening behaviour (see 

Figure 20). For the strain rate effects, the reference strain rate is 0.05s-1 which corresponds to 

the shear strain rate of the standard van shear tests at the rotation rate of 0.1deg/(Boukpeti et 

al., 2012). The strain rate parameters  ranging from 0.06 (median value for undisturbed 

sensitive clays (Yin et al., 2011) to 0.17 (maximum value for disturbed sensitive clays (Jeong 

et al., 2009)). Therefore, several numerical analyses were performed with clay having the strain 

rate parameter  within the established range, that is between 0 (no strain rate) and 0.17. Similar 

to the fall cone test, the dynamic shear modulus used was equal to 167 su, ref, while the 

Poisson’s ratio was taken as 0.49 due to undrained conditions. The shear band is embedded in 

the numerical model and scaled with strain to keep strain energy independent from the mesh 

size, leading to mesh independency. The shear zone was selected as 0.2m (median value in the 

literature (Andresen & Jostad, 2007; Leroueil, 2001). Table 3 summarizes the numerical 

parameters of the model. 



Figure 19 Undrained shear 

strength with depth 

 

Figure 20 Stress-strain behaviour in 

direct shear test 

Table 3 Parameters used in the Sainte-Monique landslide simulations 

Layer 
su,ref  

(kPa) 
St 


95

 

ref 

(s-1) 
 

Gu, ref 

(kPa) 
u 

tshear 

(m) 

sur 

(kPa) 

Crust Figure 19 - - - - 8350 0.49 - - 

Sensitive 

clay 
Figure 19 4-55 1.2 0.05 0-0.17 

167su, 

ref 
0.49 0.2 su,ref

St
 



9.1.3 Numerical results 

Figure 21  Influence of strain rate parameter  on the retrogression distances 

Figure 22 Illustration of  the sensitive clay landslides  (Q.-A. Tran & Sołowski, 2019) 

 

Figure 21 shows the influence of the strain rate parameter  on the retrogression distance of 

the sensitive clay landslide. The retrogression distance could be larger with the remoulded 

shear strength sur < 2kPa if there were no debris of the 1979 landslide (dark grey on the right 

in Figure 22) acting as a barrier to block the debris flow of the 1994 landslide. Without the 

barrier, the retrogression distance could be very high such as for the case   of 0.17 (dot line 



marked without barrier in Figure 21). Because the Canadian sensitive clays typically have a 

high value of sensitivity (St > 25) and low value of remoulded undrained shear strength (sur < 

2kPa), the reference case with 𝑠𝑢𝑟 = 1.6kPa, St = 25 and   = 0.17 was selected to analyse the 

global dynamic behaviour of the landslide. 

Figure 23 / see attached video 8. Dynamic motion of the sensitive clay landslides  (Tran & 

Sołowski, 2019) 

Figure 22 presents the shear strain and Figure 23 presents the dynamic velocity of the 

Sainte-Monique landslides. Initially, a small amount of soil mass was excavated on the 

toe of the slope, representing the erosion of the river, to trigger the landslide. After 5s, the 

erosion induced a thin horizontal shear band propagating from the toe of the slope upward. It 

was followed by the first failure with a curved shear band propagating from the horizontal 

failure surface to the ground surface. 

This first failure triggered the progressive failure afterwards. The horizontal failure surface 

kept propagating while above, the neighbouring blocks were moving and dislocating, leading 

to inclined shear bands between blocks. The propagations of the inclined shear bands formed 

the horsts and grabens which are made from relatively undisturbed materials characterised by 

a high undrained shear strength. Regarding the dynamic motion, each horsts and grabens had 



a similar lateral displacement rate (same colours of each blocks in Figure 23), with the velocity 

increasing dramatically to approximately 4m/s and reaching the equilibrium after 34s.   

Overall, a full process of the sensitive clay landslide including propagation, formation of 

shear bands and dislocation of soil blocks is simulated, under assumption that the landslide was 

triggered by erosion near the toe of the slope. The simulation captures known features of the 

landslide as well as the final spread well. The numerical analysis showed that the large 

retrogression landslide can occur with the clays with a high value of sensitivity (St > 25) and 

low value of remoulded undrained shear strength (sur < 2kPa). Apart from the remoulded 

undrained shear strength and the degradation rate of the shear strength, the strain rate 

dependency of the undrained shear strength is a crucial factor for the prediction of retrogression 

and run-out distances. 

9.2 Simulation of shaped charge 

Shaped charges are devices in which an explosive load is used to collapse a (usually metal) 

liner, thereby creating a high velocity jet that is capable of penetrating deep into metal, concrete 

or other target materials (Walters & Zukas, 1989). Shaped charges are widely used for both 

military purposes, and in oil field applications, where the perforations they create through steel 

casing and drilling damage connect the wellbore to the oil-bearing rock. 

Simulations of shaped charge detonation, jet formation and target penetration are challenging 

for any code.  Typically, Eulerian hydrocodes are used, but these have their own set of 

difficulties.  Any Lagrangian approach would necessarily need to be particle based due to the 

large deformations that the materials involved are subjected to.  The MPM implementation 

within Uintah (Berzins et al., 2016; Davison et al., 2000; Parker et al., 2006) has been used to 

simulate this process with reasonable success.  An example of one such simulation is provided 

here. 



 

Figure 24. Cross sectional view of the shaped charge geometry (description in text) 

Figure 24 depicts a cross sectional view of the shaped charge geometry used in this 

demonstration calculation.  The blue material is the liner, made of tungsten, the green material 

is a steel case, while the red material is an HMX based high explosive (HE).  Shaped charges 

typically have rotational symmetry, so the simulation is carried out using an axisymmetric 

implementation (Nairn & Guilkey, 2015). The cylinder has a diameter of 4.7 cm, while the 

liner is hemispherical with an outer diameter of 3.6 cm and an inner diameter of 3.4 cm. 

Detonation of the HE begins at the small orifice on the left side of the figure.  In a real charge, 

some sort of initiation device, such as detonation cord, would be used to initiate the explosive.  

Here, a so-called “program burn” model is used to simulate the transformation of the HE from 

a solid at ambient pressure to a gas at the same density, and thus very high pressure.  The burn 

front of the transformation advances in a spherical manner at a rate that corresponds to the 

known detonation velocity of the HE.  The resulting high pressure causes the liner to collapse, 

and this collapse creates a high-speed jet of material and a slower moving slug.   

Both the case and the liner are modeled using a Mie-Gruneisen equation of state to govern the 

volumetric response, with a Johnson-Cook flow rule and a von Mises yield condition.  



Properties are given in Table 4, along with properties for the aluminum target that the jet 

penetrates. 

Table 4. Properties of material used in the shaped charge simulation 

Property  C0  S G A B C n m 𝜀0̇ Tm 

Material kg/m3 cm/s   Mbar kbar kbar    1/s K 

Tungsten 19220 .400 1.54 1.24 1.24 15.07 1.766 0.016 0.12 1.0 1.0 3695 

Steel 7830 .3574 1.69 1.92 0.80 7.92 5.10 0.014 0.26 1.03 1.0 1793 

Aluminium 2780 .53 2.00 1.34 0.26 3.24 1.14 0.002 0.42 1.34 1.0 933.5 

 

The program burn model uses a Murnaghan equation of state for the unreacted explosive, and 

a JWL “C-form” equation of state for the reaction products.  The form of these equations is 

given in (Souers et al., 2000).  A mixing rule is used to compute pressure for partially reacted 

particles.  Properties for the explosive, including detonation velocity D are provided in Table 

5. 

Table 1. Properties of the explosive used in the shaped charge simulation 

 n  A B C R1 R2  D 

kg/m3  Mbar-1 Mbar kbar kbar    cm/s 

1717.0 7.4 39.0 5.1 40.5 13.23 4.06 0.94846 0.35 0.81 

 

The simulations carried out here were done using GIMP, with grid cell size of 0.25 mm in each 

direction.  While CPDI offers better accuracy, in principle, it is not sufficiently robust to for 

the high levels of deformation experienced by the particles.  Because of the challenging nature 

of these simulations, a few “tricks” were brought to bear to enable getting a reliable solution.  

First, because the steel case undergoes relatively little deformation, it is represented by 2X2 



particles/cell.  By contrast, the explosive, which undergoes tremendous expansion, and the 

liner, which experiences large shear strain, are represented using 4X4 particles/cell.  

Additionally, even with GIMP, simulation failures occur at times due to reacted explosive 

particles effectively becoming inverted.  This seems to be due, at least in part, to the gaseous 

reacted explosive having no shear strength.  Because of this, in these simulations, all explosive 

particles are deleted after 30 microseconds, by which time the jet is fully formed.  Explosive 

particles are also deleted before they collide with the target.  The other practical reason for 

deleting these particles is for efficiency.  Simulations of jet formation and penetration can last 

200 microseconds, and after the jet is formed, neither the case nor the explosive are 

participatory in the ballistic penetration.  By deleting the explosive particles, significant 

speedup of the simulation can be achieved. 





Figure 25. Shaped jet formation at 11μs (a), 14.6μs (b), 22μs (c) and 33μs (d) 

See attached video 9. Shaped jet formation 

Figure 25 (a)-(d) depict the shaped charge jet formation at 11, 14.6, 22 and 33 microseconds, 

respectively.  In Fig. 25 the liner material particles are colored by velocity, while the explosive 

and case remain in their original colors.  The jet tip velocity reaches approximately 0.3 cm/μs 

(3 km/s).  This is relatively low by shaped charge standards, a higher jet tip velocity could be 

achieved using a different liner geometry. 





Figure 26. Shaped jet penetrating aluminium target at 10μs (a), 30μs (b), 50μs (c), 75μs (d), 100μs (e), 

150μs (f),  and 200μs (g) 

See attached video 10. Shaped jet penetrating aluminium target 

Figure 26 (a) – (g) depict the jet penetrating an aluminum target with diameter of 5 cm and a 

length of 15 cm at a  of 10 cm, at 30, 50, 75, 150 and 200 microseconds, respectively.  Figure 

26 (d), and those at later times, illustrates a point about which one must be cautious.  Namely, 

the jet has begun breaking up into segments, despite what appears to be sufficient particle 

density to prevent numerical fracture.  This may give misleading penetration results, due to the 

“segmented penetrator effect”.  On the other hand, a sufficiently sophisticated material model 

may be able to accurately predict this type of behavior, and a Lagrangian description of the 

material is likely needed for this to be possible.  Regardless, these simulations demonstrate the 

ability of MPM to serve as a design tool when seeking to achieve a jet with a particular velocity 

profile. 



9.3 Granular flows modelling 

Granular flow modelling is an important application for MPM. In flow, granular materials go 

through significant deformation and behaviour changes from solid-like to low-density state. 

Therefore, MPM is a suitable method for these flows as it can model large deformations and 

consider changes in the material constitutive behaviour. Many investigations have used MPM 

for modelling granular flows, e.g. (Fern & Soga, 2016; Kumar et al., 2017; Mast et al., 2015; 

Seyedan & Solowski, 2017; Sołowski & Sloan, 2015; Sołowski & Sloan, 2013; Sołowski & 

Sloan, 2014). However, these investigations were focused on solid to flow like state and did 

not include low density disconnected states of granular flows.  

MPM investigations which include low density granular flows are limited. Dunatunga & 

Kamrin (2015, 2017) conducted some of the initial MPM studies of low density granular flows. 

In addition, Redaelli et al. (2017) used a set of novel constitutive models for MPM modelling 

of granular flows through different stages. Although, these research assumes that MPM is 

capable of modelling low density stages of flow, Dunatunga & Kamrin (2017) faces problem 

in using versions of MPM that update the extent of material points (e.g. CPDI). Seyedan & 

Sołowski (2019) investigated MPM capability in modelling low density granular flows, 

showed unphysical interactions between material points in this stage and suggested a solution 

for preventing the unphysical interactions. Their research builds on the framework of 

Dunatunga & Kamrin (2015) and introduces a modified algorithm for MPM modelling of 

granular flows that can model all stages of granular flows. The new algorithm can use all 

different version of MPM and provides better results than available versions of MPM. Video 

11 compares capability of different MPM algorithm in simulating filling of a flat bottom 

silo. 



See attached video 11. MPM modelling of silo filling. In this figure / video Granular Original MPM 

and Granular CPDI are modified Original MPM and modified CPDI based on algorithm Seyedan & 

Sołowski (2019, 2021). 

10. Outlook for the future

The Material Point Method has greatly matured since the first publication of Sulsky et al. 

(1994). The method become more accurate and more stable, proving itself in all sort of 

applications where dynamics is important. To mention a few: [references] The method is also 

widely used as basis for computer animation (see section 2.9 for details), confirming further its 

versatility and ability to realistically simulate multi-physics effects and difficult materials such 

as cloth.  

Yet, the Material Point Method still needs further developments to fully complement Finite 

Element Method in a toolbox of engineer. The community still needs to work on accuracy and 

efficiency of the method. Higher order of convergence, as well as mathematical proofs 

guaranteeing method stability and accuracy. Also, it seems that modelling of multi-physics 

problems, as well as those involving accurate contact laws, complex boundary conditions are 

areas which could be developed further. 

On the other hand, there is perhaps also a need for a more user friendly input for the software 

solvers. The community is also fragmented, meaning that there is no single MPM solver 

incorporating all recent advancements and developments. It is currently also not easy to 

combine the MPM with other numerical methods in a single simulation, as the developments 

are fragmented.  

Finally, the method waits for a wider adoption by practicing engineers. Even though it is well 

acknowledged in military applications, and is widely used in advanced applications, such as 



needed in Los Alamos and Sandia, the method is not widely known elsewhere. Partially, it is 

due to lack of easy to use software, but perhaps also due to relative lack of awareness of the 

unique capabilities of the method. Those could be, e.g. used to simulate explosives in mines 

and tunnelling, drilling in oil industry and penetration problems in civil engineering. Another 

application area not well explored would be biomechanics, where large deformations are 

commonplace and the need of new numerical tools is acute. 
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